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Abstract

Human Computer Interaction (HCI) is central for many
applications, including hazardous environment inspec-
tion and telemedicine. Whereas traditional methods of
HCI for teleoperating electromechanical systems in-
clude joysticks, levers, or buttons, our research focuses
on using electromyography (EMG) signals to improve
intuition and response time. An important challenge is
to accurately and efficiently extract and map EMG sig-
nals to known position for real-time control. In this pre-
liminary work, we compare the accuracy and real-time
performance of several machine-learning techniques for
recognizing specific arm positions. We present results
from offline analysis, as well as end-to-end operation
using a robotic arm.

Introduction

In certain applications of telemedicine or telerobotic control,
the speed of communication between human and computer
controller is vital to the function of the system. Intuitive con-
trollers that map human actions to control signals can im-
prove real-time performance, as well as decrease requisite
training. Our research focuses on exploiting electromyogra-
phy (EMG) signals for telerobotics.

An important challenge is to map EMG inputs to control
signals. While our goal is human-controlled, fluid motion
across a variety of telerobotic applications, this preliminary
work focuses on how to recognize static arm positions ac-
curately and efficiently for real-time control. We made use
of EMG surface electrodes for the bicep, tricep, anterior
deltoid, and posterior deltoid muscles, and these EMG sig-
nals are analyzed to determine the position of the elbow and
shoulder, each about their axis of rotation. Given these con-
tinuous positions, we evaluated a suite of supervised learn-
ing approaches for classifying arm state, comparing each al-
gorithm’s accuracy and efficiency. We also demonstrate end-
to-end operation using a robotic arm.

Prior work was either entirely in simulation (Al-Faiz, Ali,
and Miry 2010), or just tested a single learning model, such
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Figure 1: System overview

as a neural network (Hiraiwa, Shimohara, and Tokunaga
1989) or via dimensionality reduction (Fukuda et al. 2003).
By contrast, our study compares several algorithms, includ-
ing naı̈ve Bayes, decision trees, instance-based search, sup-
port vector machines (SVM), and logistic regression.

Position sensors have been utilized to determine position
and direction of movement (Artemiadis and Kyriakopoulos
2007). Our study attempted to classify static positions as a
method for determining position and potentially direction of
dynamic movements; if this approach is shown to be feasi-
ble for active motion, then less subject-mounted hardware
would be required.

System Design

Refer to Figure 1 for a visual overview of our system.
A NeuroFieldz (Boston, MA) prototype board acquires
and amplifies action potentials from EMG electrodes and
sends the data to a PC (T440p Lenovo 4, Core i7-4700MQ
2.4GHz, 8GB RAM), which preprocesses the data and ap-
plies the learning model to output control signals via a mi-
crocontroller. A PhantomX Reactor Research Robot Arm
Kit was used to evaluate end-to-end behavior.

Data Collection

EMG signals were measured at three positions for one sub-
ject (the mean absolute voltage of each data point was taken
over twenty seconds, 1000 samples per second): (1) the right
elbow at a 90◦angle, so the wrist was perpendicular to the
body; (2) the right elbow at a 150◦angle, so the wrist was
perpendicular to the body; (3) the right elbow at a 100-
110◦angle, so the wrist was perpendicular to the body.

The positional feedback capability of the Dynamixel AX-
12A robotic actuators was used to provide training outputs
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Figure 2: Histogram of the Bicep mean absolute value for
the three positions

NB SVM LR kNN J48 RF

Accuracy (%) 90.0 95.7 90.1 97.8 95.1 97.3
Training (ms) 0 20 30 0 20 120
Testing (ms) 0.02 0.15 0.03 0.08 0.02 0.02

Table 1: Evaluation results with naı̈ve Bayes (NB), support
vector machines (SVM), logistic regression (LR), k-nearest
neighbor (kNN), J48, and Random Forests (RF).

for the learning algorithms. While recording EMG signals,
the robotic arm was moved into an analogous position to the
right arm of the subject.

Preprocessing

The components of EMG signals that are useful for analysis
are lower than 400Hz, with the dominant section between
50 – 150Hz. The lower frequencies, below 20 Hz, were fil-
tered out because (a) the signal voltage was superimposed
on a DC component and (b) motion artifacts. Thus, once
the data was collected, a band-pass filter with a lower fre-
quency cutoff of 50Hz and an upper cutoff of 400Hz was
used to removed the DC components as well as some noise.
Additionally, the samples of EMG readings were rectified.
Finally, the mean absolute value of each of the four muscles
was calculated and used as an attribute for training/testing
sets. We hypothesized that given a relatively clean signal, a
supervised learning algorithm would learn to generalize over
remaining sources of noise.

Supervised Learning

Before comparing supervised learning algorithms, we plot-
ted the mean voltage for each muscle corresponding to each
position. The bicep (Figure 2) and the anterior deltoid show
clear distinctions, leading us to hypothesize that the three
static positions could be distinguished.

Each supervised learning algorithm makes modeling as-
sumptions, and thus the goal of this study was to evalu-
ate a variety of approaches, comparing both accuracy and
training/testing time. For this application we evaluated naı̈ve
Bayes, support vector machine (radial basis function kernel),
logistic regression, k-nearest neighbors (kNN; L2 distance,
1
d weighting), J48 decision trees, and Random Forests. We
conducted 10-fold cross validation across 369 instances us-
ing Weka v3.6, with results summarized in Table 1.

We found that all the algorithms correctly classified op-
erator position with at least 89% accuracy. kNN (k = 4;
we evaluated k values 1–10) yielded the greatest accuracy
(> 97%) with virtually no training time. Random Forests
had similar accuracy, but required 120ms for training.

For real-time control it is critical that model prediction
takes no longer than 50 milliseconds. For this relatively
small dataset, all of the algorithms far surpassed this require-
ment, requiring less than 1 millisecond on average.

Discussion

Based on the results of the algorithmic evaluation, kNN was
selected and a single operator was successfully able to con-
trol the robotic arm using static arm positions.1 This is im-
portant because static positions can be used alongside dy-
namic movements to help determine the direction of move-
ment using only action potentials from the EMG recordings.

All of the algorithms were fast enough for real-time con-
trol, but kNN and Random Forests were qualitatively more
accurate. Unfortunately, the kNN algorithm becomes slower
with an increased training set size. We intend to explore
Boundary Forests (Mathy et al. 2015) as an online variant
that will maintain accuracy and efficiency over time. A pit-
fall of Random Forests is that they are classically trained of-
fline, which limits their usefulness in this context – we plan
to evaluate more recent online variants (Saffari et al. 2009).

Following algorithmic improvements, we plan to evaluate
whether the system design generalizes to multiple subjects,
and additional static positions, with the eventual goal of con-
tinuous motion.
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1See: http://tmfrasca.info/emgrobotcontrol/
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