
Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Adversarial Search
Lecture 7

How can we use search to plan ahead when
other agents are planning against us?

June 10, 2017

Adversarial Search

1

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Agenda
• Games: context, history
• Searching via Minimax
• Scaling

– 𝛼−𝛽 pruning
– Depth-limiting
– Evaluation functions

• Handling uncertainty with
Expectiminimax

June 10, 2017

Adversarial Search

2

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Characterizing Games
• There are many kinds of games, and

several ways to classify them
– Deterministic vs. stochastic
– [Im]perfect information
– One, two, multi-player
– Utility (how agents value outcomes)

• Zero-sum

• Algorithmic goal: calculate a strategy (or
policy) that decides a move in each state

June 10, 2017

Adversarial Search

3

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Utility

• Opposite utilities
• Adversarial, pure

competition

• Independent utilities
• Cooperation, indifference,

competition, and more
are all possible

June 10, 2017

Adversarial Search

4

Zero/Constant-Sum General Games

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Examples: Perception vs. Chance
Deterministic Stochastic

Perfect Chess,	Checkers,	Go,	Othello Backgammon,	Monopoly

Imperfect Battleship Bridge,	Poker,	Scrabble

June 10, 2017

Adversarial Search

5

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Checkers
• 1950: First computer

player
• 1994: First computer

champion (Chinook)
ended 40-year-reign of
human champion
Marion Tinsley using
complete 8-piece
endgame

• 1995: defended against
Don Lafferty

• 2007: solved!

June 10, 2017

Adversarial Search

6

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Chess
• 1997: Deep Blue defeats

human champion Gary
Kasparov in a six-game
match

• Deep Blue examined
200M positions per
second, used very
sophisticated evaluation
and undisclosed methods
for extending some lines
of search up to 40 ply

• Current programs are
even better, if less
historic

June 10, 2017

Adversarial Search

7

DeepBlue

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Go
• Until recently, AI was

not competitive at
champion level
– 2015: beat Fan Hui,

European champion
(2-dan; 5-0)

– 2016: beat Lee Sedol,
one of the best players
in the world (9-dan; 4-1)

– 2017: beat Ke Jie, #1 in
the world (9-dan; 2-0)

• MCTS + ANNs for
policy (what to do) and
evaluation (how good
is a board state)

June 10, 2017

Adversarial Search

8

AlphaGo

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Poker
• Libratus beat four top-

class human poker
players in January,
2017
– 120,000 hands played

• Novel methods for
endgame solving in
imperfect games

• 15 million core hours of
computation (+4 during
competition)

June 10, 2017

Adversarial Search

9

Libratus

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

More Progress
• Othello: 1997,

defeated world
champion

• Bridge: 1998,
competitive with
human champions

• Scrabble: 2006,
defeated world
champion

June 10, 2017

Adversarial Search

10

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Game Formalism
• States: 𝑆 (start at 𝑆%)
• Players: 𝑃 {1, … 	𝑁} (typically take turns)
• Actions: 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠), returns legal options
• Transition function: 𝑆×𝐴 → 𝑆
• Terminal test: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙(𝑠), returns T/F
• Utility: 𝑆×𝑃 → ℝ

• Solution for a player is a policy: 𝑆 → 𝐴

June 10, 2017

Adversarial Search

11

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Game Plan :)
• Start with

deterministic, two-
player adversarial
games

• Issues to come
– Multiple players
– Resource limits
– Stochasticity

June 10, 2017

Adversarial Search

12

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Single-Agent Game Tree

June 10, 2017

Adversarial Search

13

8

2 0 2 6 4 6… …

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Value of a State

June 10, 2017

Adversarial Search

14

Non-Terminal	States:

8

2 0 2 6 4 6… …
Terminal	States:

Value	of	a	state:	
The	best	achievable	
outcome	(utility)	
from	that	state

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Adversarial Game Trees

June 10, 2017

Adversarial Search

15

-20 -8 -18 -5 -10 +4… … -20 +8

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Minimax Values

June 10, 2017

Adversarial Search

16

+8-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Tic-Tac-Toe Game Tree

June 10, 2017

Adversarial Search

17

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Adversarial Search via Minimax
• Deterministic, zero-sum

– Tic-tac-toe, chess
– One player maximizes
– The other minimizes

• Minimax search
– A search tree
– Players alternate turns
– Compute each node’s

minimax value: the best
achievable utility
against a rational
(optimal) adversary

June 10, 2017

Adversarial Search

18

8 2 5 6

max

min2 5

5

Terminal	values:
part	of	the	game	

Minimax values:
computed	recursively

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Minimax Implementation

June 10, 2017

Adversarial Search

19

def min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v, value(successor))
return	v

def max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

def value(state):
if	the	state	is	a	terminal	state:	return	the	state’s	utility
if	the	next	agent	is MAX:	return max-value(state)
if	the	next	agent	is MIN:	return min-value(state)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Minimax Evaluation
Time
• 𝒪(𝑏𝑚)

– For chess:
	𝑏 ≈ 35, 𝑚 ≈ 100

Space
• 𝒪(𝑏𝑚)

Complete
• Only if finite

Optimal
• Yes, against optimal

opponent

June 10, 2017

Adversarial Search

20

Minimax-Min

Minimax-Avg

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Multiple Players
Add a ply per player
• Independent utility:

use a vector of
values, each player
MAX own utility

• Zero-sum: each team
sequentially MIN/MAX

• In Pacman, have
multiple MIN layers for
each ghost per 1
Pacman move

June 10, 2017

Adversarial Search

21

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Scaling to Larger Games

June 10, 2017

Adversarial Search

22

Tree Pruning Depth-Limiting + Evaluation

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Minimax Example

June 10, 2017

Adversarial Search

23

12 8 5 23 2 144 6

3 2 2

3

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Minimax Pruning

June 10, 2017

Adversarial Search

24

12 8 5 23 2 14

[−∞,∞]

[−∞,∞][−∞, 3][3,3]
3

[3,∞]

[−∞, 2] [−∞, 14]
2

[−∞, 5][2,2]
2

3
[3,3]

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

General Case

• 𝛼 is the best value (to 𝑀𝐴𝑋) found so far off the current path
• If V is worse than 𝛼, 𝑀𝐴𝑋 will avoid it – prune that branch
• Define 𝛽 similarly for 𝑀𝐼𝑁

June 10, 2017

Adversarial Search

25

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Alpha-Beta Pruning

June 10, 2017

Adversarial Search

26

def min-value(state,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,value(successor,α,β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,value(successor,α,β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α:	MAX’s	best	option	on	path
β: MIN’s	best	option	on	path

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Alpha-Beta Properties
• Has no effect on minimax value computed for the root!

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to 𝒪(𝑏N/P)
– Doubles solvable depth!
– Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning
(computing about what to compute)

June 10, 2017

Adversarial Search

27

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Checkup #1

June 10, 2017

Adversarial Search

28

10 8 504

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Checkup #2

June 10, 2017

Adversarial Search

29

10 6 100 8 1 2 20 4

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Checkup #3

Adversarial Search

30

5 6 4 3 6 7 67 5 6 9 5 9 8

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Resource Limits
• Problem: in realistic games, cannot search to leaves!

• Solution: depth-limited search
1. Search only to a limited depth in the tree
2. Replace terminal utilities with an evaluation function for

non-terminal positions

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime algorithm

June 10, 2017

Adversarial Search

31

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Search Depth Matters
• Evaluation functions

are always imperfect

• The deeper in the tree
the evaluation function
is buried, the less the
quality of the evaluation
function matters

• An important example
of the tradeoff between
complexity of features
and complexity of
computation

June 10, 2017

Adversarial Search

32

Depth2

Depth10

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Evaluation Functions

• Evaluation functions score non-terminals in depth-
limited search

• Ideal: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

e.g. 	𝑓R(𝑠) 	= 	 (num	white	queens	– 	num	black	queens)

June 10, 2017

Adversarial Search

33

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Why Pacman Starves/Thrashes

• A danger of replanning agents!
– He knows his score will go up by eating a dot now
– He knows his score will go up just as much by eating a dot later
– There are no point-scoring opportunities after eating a dot (within

the horizon, two here)
– Therefore, waiting seems just as good as eating: he may go

east, then back west in the next round of replanning!

June 10, 2017

Adversarial Search

34

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Pacman/Ghost Evaluation

June 10, 2017

Adversarial Search

35

Thrashing

Thrashing-Fixed

SmartGhosts-1

SmartGhosts-2

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Nondeterministic Games

June 10, 2017

Adversarial Search

36

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Worst Case vs. Average Case

In nondeterministic games, chance is
introduced by non-opponent stochasticity
(e.g. dice, card-shuffling)

June 10, 2017

Adversarial Search

37

10 10 9 100

max

min

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Expectiminimax Search
• Why wouldn’t we know what the

result of an action will be?
– Explicit randomness: rolling dice
– Unpredictable opponents: the ghosts

respond randomly
– Actions can fail: when moving a

robot, wheels might slip

• Values should now reflect
average-case (expectimax)
outcomes, not worst-case
(minimax) outcomes

• Expectiminimax search: compute
the average score under optimal
play

– Max nodes as in minimax search
– Chance nodes are like min nodes

but the outcome is uncertain
– Calculate their expected utilities

June 10, 2017

Adversarial Search

38

10 4 5 7

max

chance

10 10 9 100

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Reminder: Probabilities
• A random variable represents

an event whose outcome is
unknown

• A probability distribution is
an assignment of weights to
outcomes

• Example: Traffic on freeway
– Random variable:

• T = whether there’s traffic
– Outcomes:

• T in {none, light, heavy}
– Distribution:

• P(T=none) = 0.25
• P(T=light) = 0.50
• P(T=heavy) = 0.25

June 10, 2017

Adversarial Search

39

0.25

0.50

0.25

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Reminder: Expectations
• The expected value of a function of a random

variable is the average, weighted by the probability
distribution over outcomes

• Example: How long to get to the airport?

June 10, 2017

Adversarial Search

40

0.25 0.50 0.25𝑷(𝑻)

𝑻

20	min 30	min 60	minTime
x x x+ + 35	min

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Expectiminimax Implementation

June 10, 2017

Adversarial Search

41

def exp-value(state):
initialize	v	= 0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	* value(successor)

return	v

def max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

def value(state):
if	the	state	is	a	terminal	state:	return	the	state’s	utility
if	the	next	agent	is MAX:	return max-value(state)
if	the	next	agent	is EXP:	return exp-value(state)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Expectiminimax Example

June 10, 2017

Adversarial Search

42

def exp-value(state):
initialize	v	= 0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	* value(successor)

return	v
5 78 24 -12

1/2
1/3

1/6

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)	=	10

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Where Do Probabilities Come From?
• In expectiminimax search, we

have a probabilistic model of how
the opponent (or environment) will
behave in any state

– Model could be a simple uniform
distribution (roll a die)

– Model could be sophisticated and
require a great deal of computation

– We have a chance node for any
outcome out of our control:
opponent or environment

– The model might say that
adversarial actions are likely!

• For now, assume each chance
node magically comes along with
probabilities that specify the
distribution over its outcomes

June 10, 2017

Adversarial Search

43

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Summer 2017 | Derbinsky

Summary
• A game can be formulated as a search problem, with a

solution policy (𝑆 → 𝐴)

• For deterministic games, the minimax algorithm plays
optimally (assuming the game tree is reasonable)

• To help with resource limitations, standard practice is
to employ alpha-beta pruning and depth-limited
search (with an evaluation function)

• To model uncertainty, the expectiminimax algorithm
introduces chance nodes that employ a probability
distribution over actions to model expected utility

June 10, 2017

Adversarial Search

44

