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Adversarial Search
Lecture 7

How can we use search to plan ahead when 
other agents are planning against us?
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Agenda
• Games: context, history
• Searching via Minimax
• Scaling

– 𝛼−𝛽 pruning
– Depth-limiting
– Evaluation functions

• Handling uncertainty with 
Expectiminimax
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Characterizing Games
• There are many kinds of games, and 

several ways to classify them
– Deterministic vs. stochastic
– [Im]perfect information
– One, two, multi-player
– Utility (how agents value outcomes) 

• Zero-sum

• Algorithmic goal: calculate a strategy (or 
policy) that decides a move in each state
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Utility

• Opposite utilities
• Adversarial, pure 

competition

• Independent utilities
• Cooperation, indifference, 

competition, and more 
are all possible
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Examples: Perception vs. Chance
Deterministic Stochastic

Perfect Chess,	Checkers,	Go,	Othello Backgammon,	Monopoly

Imperfect Battleship Bridge,	Poker,	Scrabble
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Checkers
• 1950: First computer 

player
• 1994: First computer 

champion (Chinook) 
ended 40-year-reign of 
human champion 
Marion Tinsley using 
complete 8-piece 
endgame

• 1995: defended against 
Don Lafferty

• 2007: solved!
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Chess
• 1997: Deep Blue defeats 

human champion Gary 
Kasparov in a six-game 
match

• Deep Blue examined 
200M positions per 
second, used very 
sophisticated evaluation 
and undisclosed methods 
for extending some lines 
of search up to 40 ply

• Current programs are 
even better, if less 
historic
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Go
• Until recently, AI was 

not competitive at 
champion level
– 2015: beat Fan Hui, 

European champion    
(2-dan; 5-0)

– 2016: beat Lee Sedol, 
one of the best players 
in the world (9-dan; 4-1)

– 2017: beat Ke Jie, #1 in 
the world (9-dan; 2-0)

• MCTS + ANNs for 
policy (what to do) and 
evaluation (how good 
is a board state)
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Poker
• Libratus beat four top-

class human poker 
players in January, 
2017
– 120,000 hands played

• Novel methods for 
endgame solving in 
imperfect games

• 15 million core hours of 
computation (+4 during 
competition)
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More Progress
• Othello: 1997, 

defeated world 
champion

• Bridge: 1998, 
competitive with 
human champions

• Scrabble: 2006, 
defeated world 
champion

June 10, 2017

Adversarial Search

10



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Summer 2017    | Derbinsky

Game Formalism
• States: 𝑆 (start at 𝑆%)
• Players: 𝑃 {1, … 	𝑁} (typically take turns)
• Actions: 𝐴𝑐𝑡𝑖𝑜𝑛(𝑠), returns legal options
• Transition function: 𝑆×𝐴 → 𝑆
• Terminal test: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙(𝑠), returns T/F
• Utility: 𝑆×𝑃 → ℝ

• Solution for a player is a policy: 𝑆 → 𝐴
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Game Plan :)
• Start with 

deterministic, two-
player adversarial 
games

• Issues to come
– Multiple players
– Resource limits
– Stochasticity
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Single-Agent Game Tree

June 10, 2017

Adversarial Search

13

8

2 0 2 6 4 6… …



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Summer 2017    | Derbinsky

Value of a State
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Non-Terminal	States:

8

2 0 2 6 4 6… …
Terminal	States:

Value	of	a	state:	
The	best	achievable	
outcome	(utility)	
from	that	state
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Adversarial Game Trees
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Minimax Values
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+8-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:
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Tic-Tac-Toe Game Tree
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Adversarial Search via Minimax
• Deterministic, zero-sum

– Tic-tac-toe, chess
– One player maximizes
– The other minimizes

• Minimax search
– A search tree
– Players alternate turns
– Compute each node’s 

minimax value: the best 
achievable utility 
against a rational 
(optimal) adversary
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Terminal	values:
part	of	the	game	

Minimax values:
computed	recursively
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Minimax Implementation
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def min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v, value(successor))
return	v

def max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

def value(state):
if	the	state	is	a	terminal	state:	return	the	state’s	utility
if	the	next	agent	is MAX:	return max-value(state)
if	the	next	agent	is MIN:	return min-value(state)
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Minimax Evaluation
Time
• 𝒪(𝑏𝑚)

– For chess:          
	𝑏 ≈ 35, 𝑚 ≈ 100

Space
• 𝒪(𝑏𝑚)

Complete
• Only if finite

Optimal
• Yes, against optimal

opponent

June 10, 2017
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Multiple Players
Add a ply per player
• Independent utility: 

use a vector of 
values, each player 
MAX own utility

• Zero-sum: each team 
sequentially MIN/MAX

• In Pacman, have 
multiple MIN layers for 
each ghost per 1 
Pacman move
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Scaling to Larger Games
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Tree Pruning Depth-Limiting + Evaluation
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Minimax Example
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Minimax Pruning
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General Case

• 𝛼 is the best value (to 𝑀𝐴𝑋) found so far off the current path
• If V is worse than 𝛼, 𝑀𝐴𝑋 will avoid it – prune that branch
• Define 𝛽 similarly for 𝑀𝐼𝑁
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Alpha-Beta Pruning

June 10, 2017
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def min-value(state,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,value(successor,α,β))
if	v	≤	α return	v
β	=	min(β,	v)

return	v

def max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,value(successor,α,β))
if	v	≥	β return	v
α =	max(α,	v)

return	v

α:	MAX’s	best	option	on	path
β: MIN’s	best	option	on	path
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Alpha-Beta Properties
• Has no effect on minimax value computed for the root!

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
– Time complexity drops to 𝒪(𝑏N/P)
– Doubles solvable depth!
– Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning
(computing about what to compute)

June 10, 2017
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Checkup #1
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Checkup #2
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Checkup #3
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Resource Limits
• Problem: in realistic games, cannot search to leaves!

• Solution: depth-limited search
1. Search only to a limited depth in the tree
2. Replace terminal utilities with an evaluation function for 

non-terminal positions

• Guarantee of optimal play is gone

• More plies makes a BIG difference

• Use iterative deepening for an anytime algorithm

June 10, 2017
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Search Depth Matters
• Evaluation functions 

are always imperfect

• The deeper in the tree 
the evaluation function 
is buried, the less the 
quality of the evaluation 
function matters

• An important example 
of the tradeoff between 
complexity of features 
and complexity of 
computation

June 10, 2017
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Evaluation Functions

• Evaluation functions score non-terminals in depth-
limited search

• Ideal: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

e.g.  	𝑓R(𝑠) 	= 	 (num	white	queens	– 	num	black	queens)
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Why Pacman Starves/Thrashes

• A danger of replanning agents!
– He knows his score will go up by eating a dot now
– He knows his score will go up just as much by eating a dot later
– There are no point-scoring opportunities after eating a dot (within 

the horizon, two here)
– Therefore, waiting seems just as good as eating: he may go 

east, then back west in the next round of replanning!

June 10, 2017
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Pacman/Ghost Evaluation

June 10, 2017
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Nondeterministic Games

June 10, 2017
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Worst Case vs. Average Case

In nondeterministic games, chance is 
introduced by non-opponent stochasticity
(e.g. dice, card-shuffling)

June 10, 2017
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Expectiminimax Search
• Why wouldn’t we know what the 

result of an action will be?
– Explicit randomness: rolling dice
– Unpredictable opponents: the ghosts 

respond randomly
– Actions can fail: when moving a 

robot, wheels might slip

• Values should now reflect 
average-case (expectimax) 
outcomes, not worst-case 
(minimax) outcomes

• Expectiminimax search: compute 
the average score under optimal 
play

– Max nodes as in minimax search
– Chance nodes are like min nodes 

but the outcome is uncertain
– Calculate their expected utilities

June 10, 2017
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Reminder: Probabilities
• A random variable represents 

an event whose outcome is 
unknown

• A probability distribution is 
an assignment of weights to 
outcomes

• Example: Traffic on freeway
– Random variable: 

• T = whether there’s traffic
– Outcomes: 

• T in {none, light, heavy}
– Distribution: 

• P(T=none) = 0.25
• P(T=light) = 0.50 
• P(T=heavy) = 0.25

June 10, 2017
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Reminder: Expectations
• The expected value of a function of a random 

variable is the average, weighted by the probability 
distribution over outcomes

• Example: How long to get to the airport?

June 10, 2017
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𝑻

20	min 30	min 60	minTime
x x x+ + 35	min
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Expectiminimax Implementation

June 10, 2017
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def exp-value(state):
initialize	v	= 0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	* value(successor)

return	v

def max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

def value(state):
if	the	state	is	a	terminal	state:	return	the	state’s	utility
if	the	next	agent	is MAX:	return max-value(state)
if	the	next	agent	is EXP:	return exp-value(state)
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Expectiminimax Example

June 10, 2017
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def exp-value(state):
initialize	v	= 0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	* value(successor)

return	v
5 78 24 -12

1/2
1/3

1/6

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)	=	10
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Where Do Probabilities Come From?
• In expectiminimax search, we 

have a probabilistic model of how 
the opponent (or environment) will 
behave in any state

– Model could be a simple uniform 
distribution (roll a die)

– Model could be sophisticated and 
require a great deal of computation

– We have a chance node for any 
outcome out of our control: 
opponent or environment

– The model might say that 
adversarial actions are likely!

• For now, assume each chance 
node magically comes along with 
probabilities that specify the 
distribution over its outcomes

June 10, 2017
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Summary
• A game can be formulated as a search problem, with a 

solution policy (𝑆 → 𝐴)

• For deterministic games, the minimax algorithm plays 
optimally (assuming the game tree is reasonable)

• To help with resource limitations, standard practice is 
to employ alpha-beta pruning and depth-limited 
search (with an evaluation function)

• To model uncertainty, the expectiminimax algorithm 
introduces chance nodes that employ a probability 
distribution over actions to model expected utility
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