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Adversarial Search
Lecture 7

How can we use search to plan ahead when
other agents are planning against us?
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Agenda

« Games: context, history
« Searching via Minimax
» Scaling

— a—f pruning

— Depth-limiting

— Evaluation functions

* Handling uncertainty with
Expectiminimax
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Characterizing Games

* There are many kinds of games, and
several ways to classify them

— Deterministic vs. stochastic @ @
— [Im]perfect information |
— One, two, multi-player = )

— Utility (how agents value outcomes)
« Zero-sum

 Algorithmic goal: calculate a strategy (or
policy) that decides a move in each state

Adversarial Search
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Utility

Zero/Constant-Sum General Games

* Opposite utilities * Independent utilities

* Adversarial, pure « Cooperation, indifference,
competition competition, and more

are all possible

Adversarial Search
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Examples: Perception vs. Chance

“

Chess, Checkers, Go, Othello Backgammon, Monopoly

Battleship Bridge, Poker, Scrabble

E Adversarial Search
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1950: First computer
player

* 1994: First computer
champion (Chinook)
ended 40-year-reign of
human champion
Marion Tinsley using
complete 8-piece
endgame

« 1995: defended against
Don Lafferty

« 2007: solved!

Adversarial Search

June 10, 2017 6



Summer 2017

Wentworth Institute of Technology = COMP3770 — Artificial Intelligence

Chess

« 1997: Deep Blue defeats
human champion Gary
Kasparov in a six-game
match

 Deep Blue examined
200M positions per
second, used very
sophisticated evaluation
and undisclosed methods
for extending some lines
of search up to 40 ply

« Current programs are
even better, if less
historic

Adversarial Search
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* Until recently, Al was
not competitive at — { — ;
champion level . 20 ‘e ®

— 2015: beat Fan Hui, — =
European champion 4 +
(2-dan; 5-0) ! :

— 2016: beat Lee Sedol, ! | -
one of the best players | , . >
in the world (9-dan; 4-1) — : -

— 2017: beat Ke Jie, #1in | e
the world (9-dan; 2-0) == ==

« MCTS + ANNs for
policy (what to do) and
evaluation (how good

Is a board state) | AlphaGo

Adversarial Search
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Poker

 Libratus beat four top-
class human poker
players in January,
2017

— 120,000 hands played

* Novel methods for
endgame solving in
imperfect games

* 15 million core hours of
computation (+4 during
competition)

Adversarial Search
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More Progress

 Othello: 1997,
defeated world
champion

» Bridge: 1998,
competitive with
human champions

 Scrabble: 2006,
defeated world
champion

Adversarial Search
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Game Formalism

« States: S (start at S,)

* Players: P {1, ... N} (typically take turns)
» Actions: Action(s), returns legal options
* Transition function: x4 - S

* Terminal test: Terminal(s), returns T/F
« Utility: SXP - R

» Solution for a player is a policy: S - A

Adversarial Search
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» Start with

Game Plan :)

deterministic, two-

player adversarial

games

 |ssues to come
— Multiple players
— Resource limits

— Stochasticity

Adversarial Search
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Single-Agent Game Tree
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Value of a State

\_

Value of a state:

outcome (utility)
from that state

Non-Terminal States:

The best achievable V(s)= max V(s)

s’ €children(s)

__—

Al
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Adversarial Game Trees

/\
3> -% ] €% ]

T~ T~
3~ JN3 - N ¢~ N €-

Adversarial Search

June 10, 2017 15




Wentworth Institute of Technology = COMP3770 — Atrtificial Intelligence | Summer 2017 | Derbinsky

Minimax Values

States Under Agent’s Control:
V(s)=  max V(s States Under Opponent’s Control:

s’ €successors(s) ,
V(s = min Vi(s)
sEsuccessors(s’)

Terminal States:
V(s) = known

Adversarial Search
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Tic-Tac-Toe Game Tree

MAX (X)

X X
MIN (O)

X X

x[o x| To
MAX (X)

x[o x]o 0
MIN (O) X X

x[o x]o[x 0
TERMINAL 0 olo[X X

0 X/ X|o 0

Utility -1 0 +1
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Adversarial Search via Minimax

e Deterministic, zero-sum Mini ,
_ inimax values:
— Tic-tac-toe, chess computed recursively
— One player maximizes

— The other minimizes max

* Minimax search min
— A search tree
— Players alternate turns / \ / \

— Compute each node’s
minimax value: the best
achievable utility
against a rational
(optimal) adversary

Terminal values:
part of the game

Adversarial Search
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Minimax Implementation

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is MIN: return min-value(state)

' 4 Y

def max-value(state): def min-value(state):
initialize v = -0 initialize v = +o0
for each successor of state: for each successor of state:
v = max(v, value(successor)) v = min(v, value(successor))
return v return v

Adversarial Search
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Minimax Evaluation

Time

« O(b™)
— For chess:
b=~ 35 m= 100

Space
« O(bm)

Complete

Derbinsky

* Only if finite

Optimal

* Yes, against optimal
opponent

H Minimax-Avg

Adversarial Search
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Multiple Players

Add a ply per player
* Independent utility:
use a vector of

values, each player
MAX own utility

e Zero-sum: each team
sequentially MIN/MAX

* In Pacman, have
multiple MIN layers for
each ghost per 1
Pacman move

Adversarial Search
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Scaling to Larger Games

Tree Pruning Depth-Limiting + Evaluation

Y b4

7/ \

Adversarial Search
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Minimax Example

Adversarial Search
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Minimax Pruning

Adversarial Search
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General Case

MAX

MIN

MAX

MIN

* «a is the best value (to MAX) found so far off the current path
« If Vis worse than a, MAX will avoid it — prune that branch
* Define g similarly for MIN

Adversarial Search
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Alpha-Beta Pruning

def min-value(state, a, B):
initialize v = +oo
for each successor of state:
v = min(v,value(successor,a,))
ifv<areturnv
B =min(B, v)

return v

def max-value(state, a, B):
initialize v = -o0
for each successor of state:
v = max(v,value(successor,a,B))
if v>Breturnv
o = max(a, v)
return v

o: MAX’s best option on path
B: MIN’s best option on path

Adversarial Search
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Alpha-Beta Properties

Has no effect on minimax value computed for the root!

Good child ordering improves effectiveness of pruning

With “perfect ordering”:
— Time complexity drops to 0(b™/?)
— Doubles solvable depth!
— Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning
(computing about what to compute)

Adversarial Search
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Checkup %

10 3 4 50

Adversarial Search
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Checkup %

10 6 100 8 1 2 20 4

Adversarial Search
June 10, 2017 29




Wentworth Institute of Technology = COMP3770 — Atrtificial Intelligence | Summer 2017 | Derbinsky

Checkup #

s 9 .
Adversarial Search
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Resource Limits

* Problem: in realistic games, cannot search to leaves!

« Solution: depth-limited search
1. Search only to a limited depth in the tree

2. Replace terminal utilities with an evaluation function for
non-terminal positions

» Guarantee of optimal play is gone
* More plies makes a BIG difference

« Use iterative deepening for an anytime algorithm

Adversarial Search
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Search Depth Matters

* Evaluation functions
are always imperfect o

 The deeper in the tree
the evaluation function
IS buried, the less the
quality of the evaluation
function matters

* An important example
of the tradeoff between
complexity of features
and complexity of % Depth2
computation = Depth10

Adversarial Search
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Evaluation Functions

1 Vet
E3 122
12 €2 [ [
H B:=H B
HzE:z:H B
<l Fl
2@ || 2=zlg
2wy

Black to move R oLl S\ White to move

White slightly better Black winning

« Evaluation functions score non-terminals in depth-
Imited search

 |deal: returns the actual minimax value of the position

 |n practice: typically weighted linear sum of features:
e.g. fi(s) = (num white queens - num black queens)

Adversarial Search
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Why Pacman Starves/Thrashes

-3 .
/\

« A danger of replanning agents!
— He knows his score will go up by eating a dot now
— He knows his score will go up just as much by eating a dot later

— There are no point-scoring opportunities after eating a dot (within
the horizon, two here)

— Therefore, waiting seems just as good as eating: he may go
east, then back west in the next round of replanning!

Adversarial Search
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Pacman/Ghost Evaluation

w Thrashing

w Thrashing-Fixed

w SmartGhosts-1

w SmartGhosts-2

Adversarial Search
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Nondeterministic Games

Adversarial Search
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Worst Case vs. Average Case

max
’ Oo|X|
é‘? O min
10 10 9 100

In nondeterministic games, chance is
iIntroduced by non-opponent stochasticity
(e.g. dice, card-shuffling)

Adversarial Search
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Expectiminimax Search

«  Why wouldn’t we know what the
result of an action will be?
— Explicit randomness: rolling dice

— Unpredictable opponents: the ghosts
respond randomly

— Actions can fail: when moving a
robot, wheels might slip chance

max

* Values should now reflect
average-case (expectimax)
outcomes, not worst-case
(minimax) outcomes

10 10 9 100

« Expectiminimax search: compute
the average score under optimal
play

— Max nodes as in minimax search

— Chance nodes are like mir_1 nodes
but the outcome is uncertain

— Calculate their expected utilities

Adversarial Search
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Reminder: Probabilities

* Arandom variable represents
an event whose outcome is
unknown

0.25

« A probability distribution is
an assignment of weights to
outcomes

« Example: Traffic on freeway

— Random variable:

* T = whether there’s traffic
— Outcomes:

« Tin{none, light, heavy}
— Distribution:

* P(T=none) = 0.25

« P(T=light) = 0.50

* P(T=heavy) =0.25

0.50

Adversarial Search
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Reminder: Expectations

 The expected value of a function of a random
variable is the average, weighted by the probability
distribution over outcomes

« Example: How long to get to the airport?

Time 20 min 30 min 60 min

P(T)

0.50

Adversarial Search
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Expectiminimax Implementation

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MIAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

' 4 Y

def max-value(state): def exp-value(state):
initialize v = -0 initializev=0
for each successor of state: for each successor of state:
v = max(v, value(successor)) p = probability(successor)
return v v += p * value(successor)
returnv

Adversarial Search
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Expectiminimax Example

def exp-value(state):
initializev=0

for each successor of state:
p = probability(successor) 1/2 1/6
v += p * value(successor) 1/3
return v v
3 24 -12

v=(1/2)(8) +(1/3) (24) + (1/6) (-12) = 10

Adversarial Search
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Where Do Probabilities Come From?

* In expectiminimax search, we

have a probabilistic model of how Bl
the opponent (or environment) will
behave in any state ]

— Model could be a simple uniform
distribution (roll a die)

— Model could be sophisticated and
require a great deal of computation

— We have a chance node for any
outcome out of our control:
opponent or environment

— The model might say that
adversarial actions are likely!

 For now, assume each chance
node magically comes along with
probabilities that specify the
distribution over its outcomes

Adversarial Search
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Summary

A game can be formulated as a search problem, with a
solution policy (S = A)

* For deterministic games, the minimax algorithm plays
optimally (assuming the game tree is reasonable)

* To help with resource limitations, standard practice is
to employ alpha-beta pruning and depth-limited
search (with an evaluation function)

* To model uncertainty, the expectiminimax algorithm
iIntroduces chance nodes that employ a probability
distribution over actions to model expected utility

Adversarial Search
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