Local Search Lecture 6

What search algorithms arise if we **relax our assumptions** – instead of systemically searching alternative paths, evaluate/modify one or more current states?

Agenda

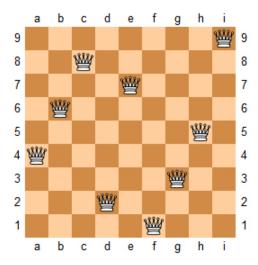
- Local search
 - Optimization
- Objective functions
- Hill Climbing
- Simulated Annealing
- Local Beam Search
- Genetic Algorithms
- Continuous state spaces

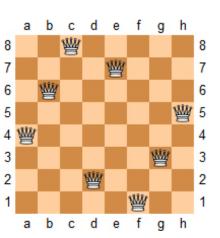
Motivation

- We have studied algorithms that explore search spaces via paths, keeping alternatives in memory
 - This gets expensive!
- In many problems, path to goal is irrelevant the final state is all that matters (called completestate formulations, vs. partial-state)
- Local search algorithms operate using a current node, moving only to neighbors, typically...
 - require little memory (often constant)
 - find reasonable solutions (possibly random restarts)

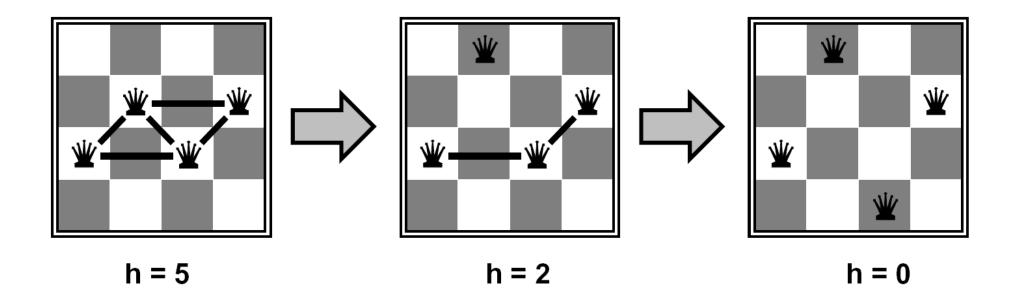
Example: N-Queens

- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
 - How many states?
- Notice "path" to solution doesn't matter, just final placement

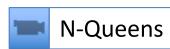




Iterative Improvement



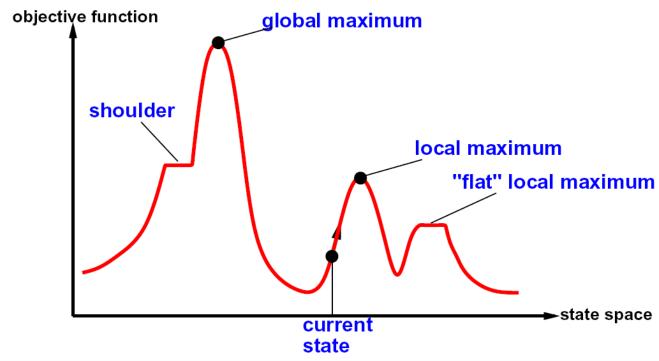
Can typically solve even large problems quickly via incremental moves



Local Search

Solving Optimization Problems

In addition to search, local search algorithms are useful for solving **optimization problems**, in which the aim is to find the best state according to an **objective function**



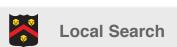
Hill Climbing

<u>Algorithm</u>

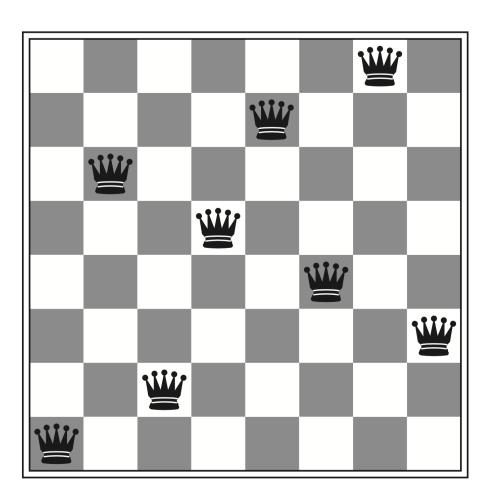
- Start wherever
- Repeat: move to the best neighboring state

 If no neighbors better than current, quit

Many variants exist



Checkup

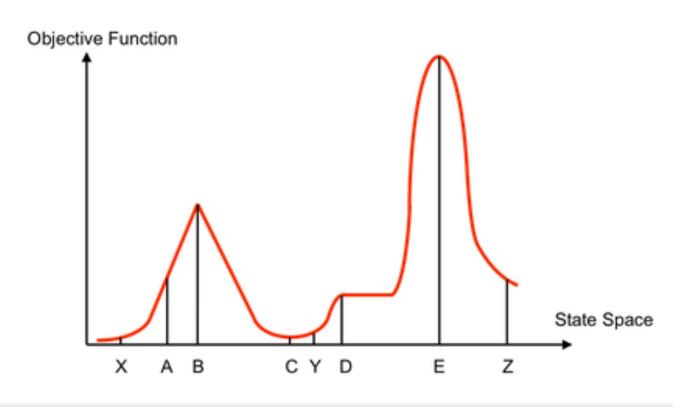


Complete?

 Random restarts fixes this trivially, why?

Checkup

- Where do you end up if you start from...
 - X
 - Y
 - Z
- Optimal?



Simulated Annealing (1)

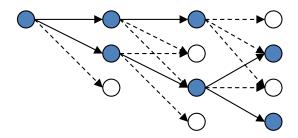
- Basic idea: escape local maxima by allowing downhill moves
- But make them rarer as time goes on
- Theory: if slow enough, will converge to optimal state!

Simulated Annealing (2)

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next. a node
                         T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```


Local Beam Search

- Start: k randomly generated states
- Loop: generate successors, select k best
 - If any are goal, stop



- Variant: stochastic beam search
 - Choose k at random, with probability being an increasing function of the value

Genetic Algorithms (1)

- Basic idea:
 - stochastic beam search + generate successors from pairs of states
- Possibly the most misunderstood, misapplied technique

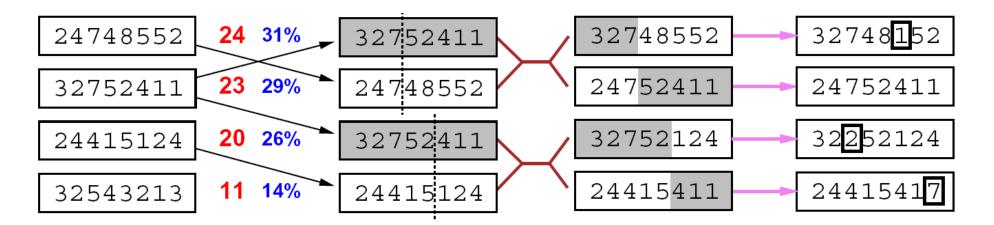


Fitness

Selection

Mutation

Genetic Algorithms (2)



Cross-Over

Pairs

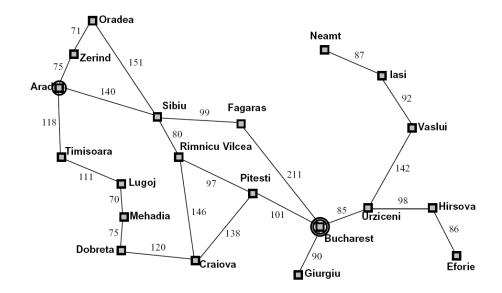
Local Search in Continuous Spaces

- Most of the algorithms we have mentioned thus far work only in discrete state spaces
 - Infinite branching factor!
- Sometimes we can take a continuous problem and discretize the neighborhood of each state

- But how to perform truly continuous search?
 - Long topic, here's a flavor

Example

- Where to locate three airports in Romania?
- Objective: minimize the sum of squared distances to each city on the map



$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C} (x_i - x_c)^2 + (y_i - y_c)^2$$

Summer 2017

Using the Gradient

$$\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3}) \qquad \frac{\partial f}{\partial x_1} = 2\sum_{c \in C} (x_i - x_c)$$

- Finding the magnitude and direction of steepest slope could be used to find the minimum via gradient methods
- Often cannot be solved in closed form, so the **empirical gradient** is determined via evaluating the response $\pm \delta$

Hill Climbing

$$x \leftarrow x + \alpha \nabla f(x)$$

The step size (α) is a small constant

 Variety of methods for choosing/updating the value

Newton's Method

 A method for finding successively better approximations to the roots of a function

$$f(x) = 0 \text{ via } x \leftarrow x - \frac{f(x)}{f'(x)}$$

In this case, finding extrema via...

$$x \leftarrow x - H_f^{-1}(x) \nabla f(x)$$

where H is the Hessian

Summary

- Local search methods operate on complete-state formulations and keep only a small number of nodes in memory
- Hill-climbing methods can get stuck in local optima and stochastic methods, such as simulated annealing, can return optimal solutions under certain conditions
- A genetic algorithm is a stochastic hill-climbing search operating over a large population in which new states are generated by mutation and crossover
- Local search in continuous spaces often involves evaluating the gradient of the objective function

