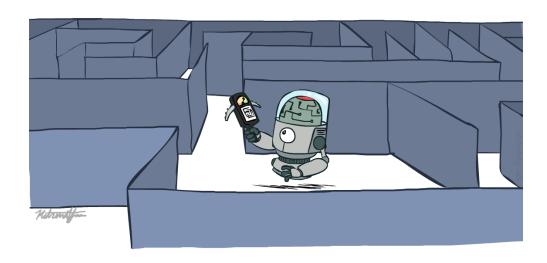
Informed Search Lecture 5

How can we exploit problem-specific knowledge to find solutions more efficiently?

Where does this knowledge come from and under what conditions is it useful?

Agenda

- Review: Uninformed Search
- Informing Search via Heuristics
- Best-First Search: Greedy, A*
 - Properties: Admissibility, Consistency
- Heuristic Origins



Search Problem Formalism

Defined via the following components:

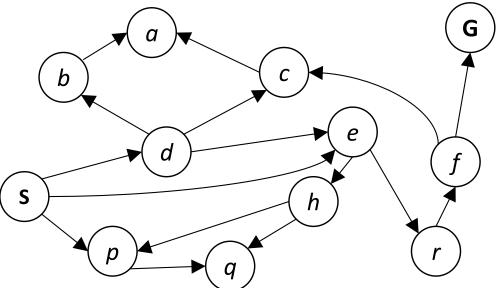
- The initial state the agent starts in
- A successor/transition function
 - $S(x) = \{action + cost state\}$
- A goal test, which determines whether a given state is a goal state
- A path cost that assigns a numeric cost to each path

A **solution** is a sequence of actions leading from initial state to a goal state (**optimal** = lowest path cost)

Together the initial state and successor function implicitly define the **state space**, the set of all reachable states

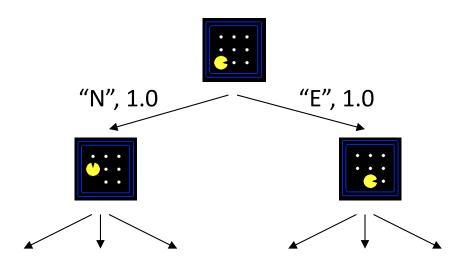
State Space Graph

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal node(s)
- In a search graph, each state occurs only once!
- We can rarely build this full graph in memory (i.e. it's too big), but it's a useful idea



Search Tree

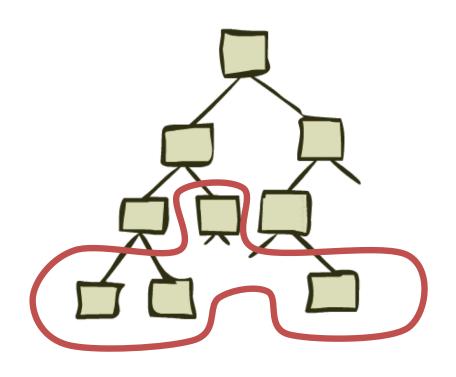
- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree



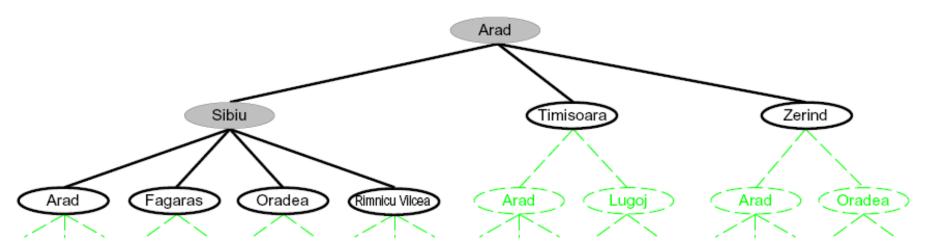
Searching for Solutions

Basic idea: incrementally build a search tree until a goal state is found

- Root = initial state
- Expand via transition function to create new nodes
- Nodes that haven't been expanded are leaf nodes and form the frontier (open list)
- Different search strategies choose next node to expand (as few as possible!)
- Use a **closed list** to prevent expanding the same state more than once

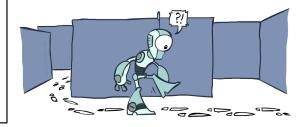


General Algorithm



```
function GRAPH-SEARCH(problem, fringe) returns a solution, or failure  \begin{array}{l} closed \leftarrow \text{an empty set} \\ fringe \leftarrow \text{INSERT}(\text{MAKE-NODE}(\text{INITIAL-STATE}[problem]), fringe) \\ \textbf{loop do} \\ \textbf{if } fringe \text{ is empty then return failure} \\ node \leftarrow \text{REMOVE-FRONT}(fringe) \\ \textbf{if } \text{GOAL-TEST}(problem, \text{STATE}[node]) \textbf{ then return } node \\ \textbf{if } \text{STATE}[node] \text{ is not in } closed \textbf{ then} \\ \textbf{add } \text{STATE}[node] \text{ to } closed \\ fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe) \\ \textbf{end} \\ \end{array}
```

Queue (FIFO)
Stack (LIFO)
Priority Queue
• f(n)



Informed Search

Evaluating a Search Strategy

Solution

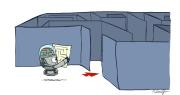
- Completeness: does it always find a solution if one exists?
- Optimality: does it always find a least-cost solution?

Efficiency

- Time Complexity: number of nodes generated/expanded
- Space Complexity: maximum number of nodes in memory

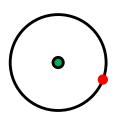
Uninformed Search

Search given only the problem definition



	DFS	BFS	UCS
Fringe	LIFO (stack)	FIFO (queue)	PQ (path cost)
Complete		X	X
Optimal			X
Time	$\mathcal{O}(b^m)$	$\mathcal{O}(b^s)$	$\mathcal{O}(b^{\mathcal{C}^*/\mathcal{E}})$
Space	$\mathcal{O}(bm)$	$\mathcal{O}(b^s)$	$\mathcal{O}(b^{\mathcal{C}^*/arepsilon})$

Assumptions: potentially infinite depth, arbitrary positive action costs



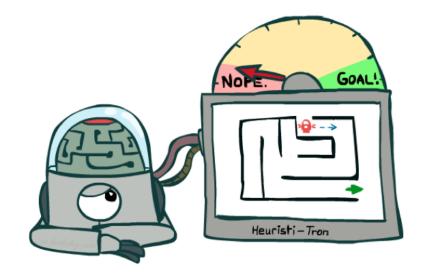
Let's Inform the Search

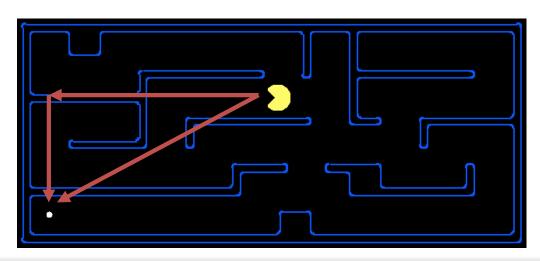
Search Heuristic

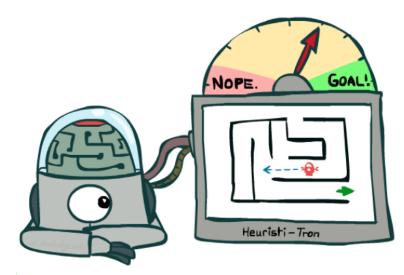
A[n] heuristic is...

- a function, h(n), that estimates how close the input state is from a goal state
- designed for a particular problem

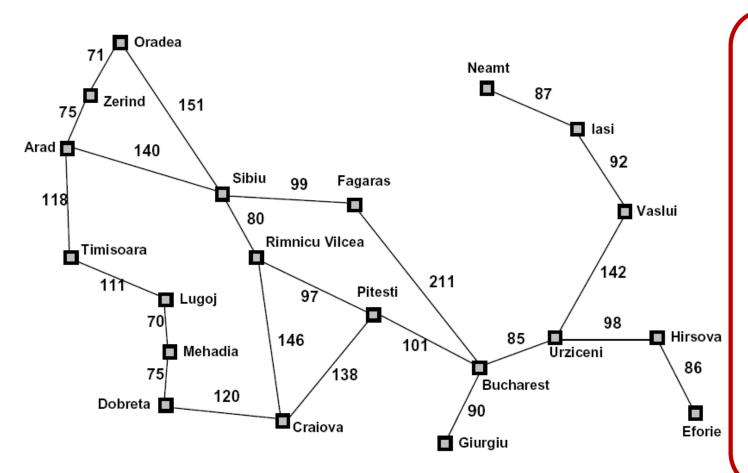
Examples: distance (Manhattan, Euclidean)







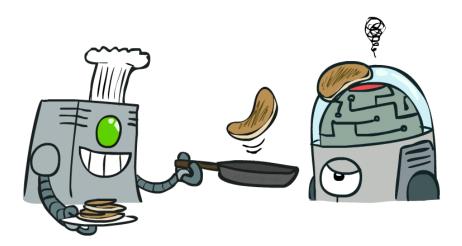
Example Search Heuristic



h(x)

Straight-line distarto Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

The Pancake Problem



BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

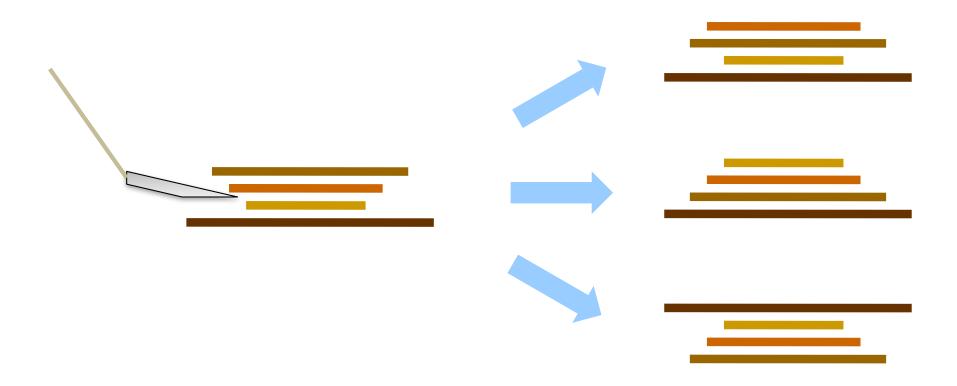
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \le g(n) \le 2n + 3$.

1. Introduction

We introduce our problem by the following quotation from [1]

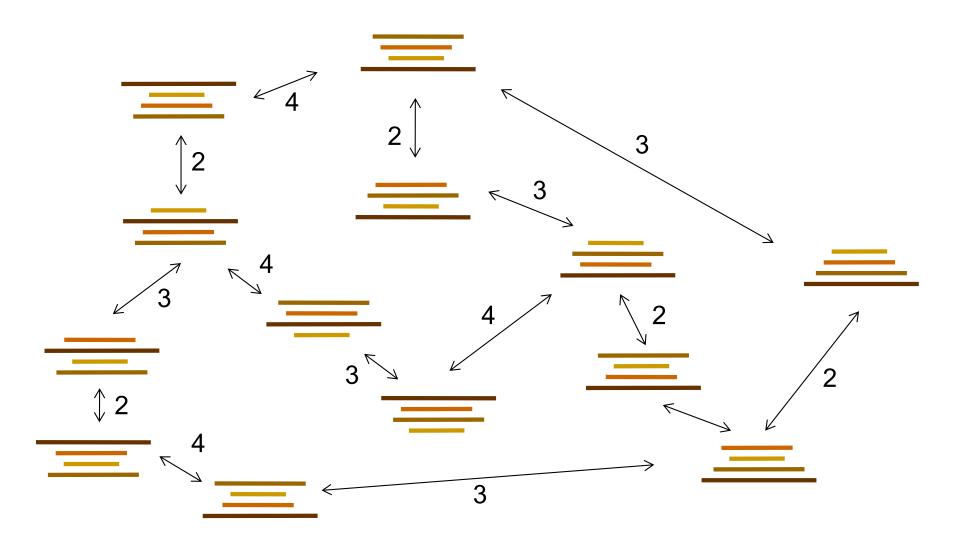
The chef in our place is sloppy, and when he prepares a stack of pancakes they come out all different sizes. Therefore, when I deliver them to a customer, on the way to the table I rearrange them (so that the smallest winds up on top, and so on, down to the largest at the bottom) by grabbing several from the top and flipping them over, repeating this (varying the number I flip) as many times as necessary. If there are n pancakes, what is the maximum number of flips (as a function f(n) of n) that I will ever have to use to rearrange them?

Pancake Problem

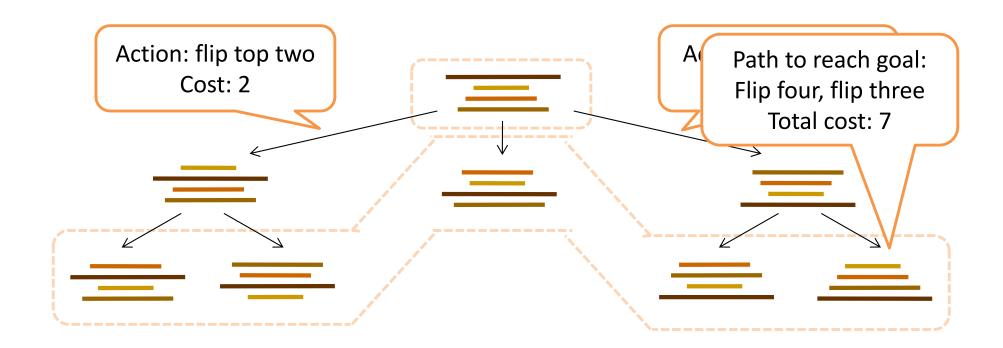


Cost: number of pancakes flipped

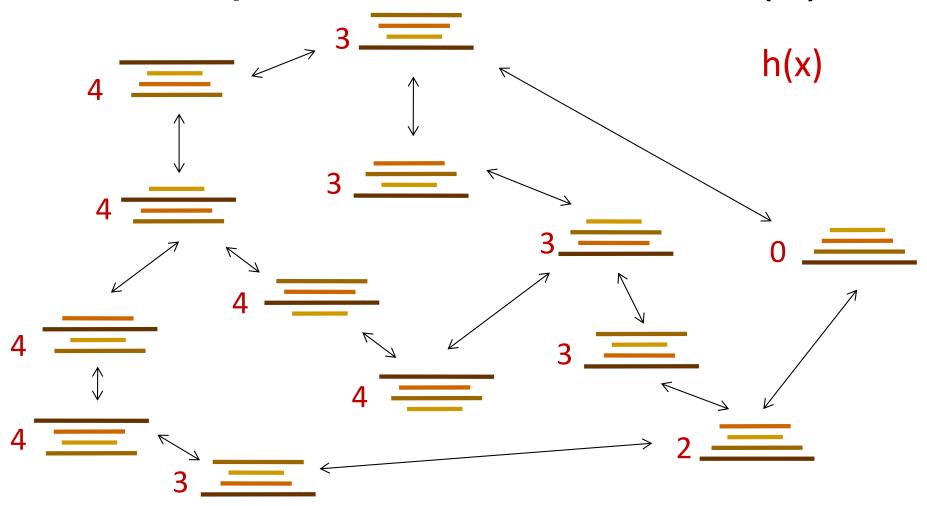
[Partial] State Space Graph



Example Graph Search



Example Search Heuristic (2)



Heuristic: number of the largest pancake out of place

Best-First Search

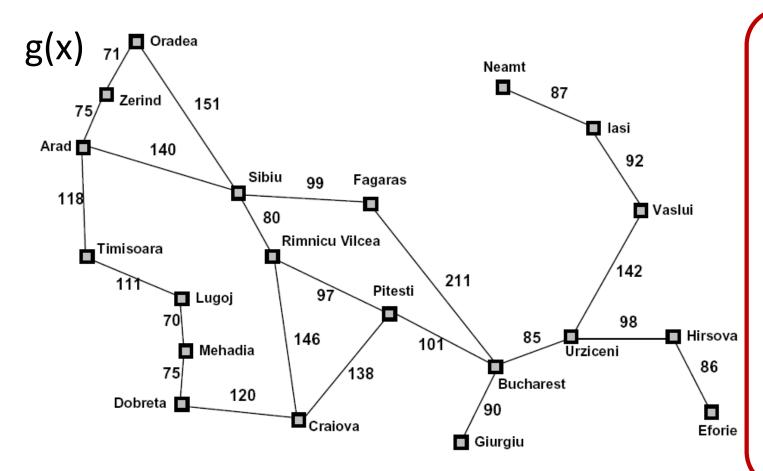
- In Graph Search, apply f(n), an evaluation function, for each node
 - Estimates "desirability"
- Typical decomposition of f(n)
 - -g(n): cost to reach n from initial state
 - -h(n): heuristic function
 - Estimate of distance to goal

Special cases

- Uniform-Cost Search (**UCS**): f(n) = g(n)
- **Greedy** Best-First Search: f(n) = h(n)
- A* Search: f(n) = g(n) + h(n)

Greedy Best-First Search

Target Problem



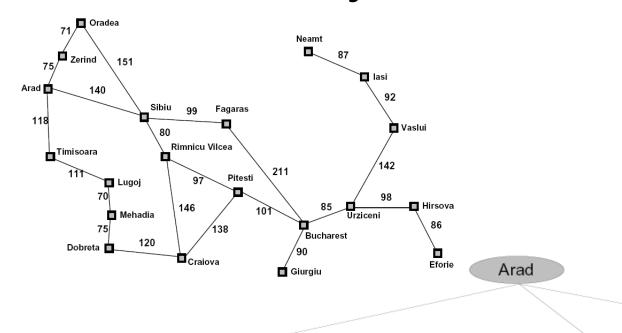
h(x)

Straight-line distanto Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

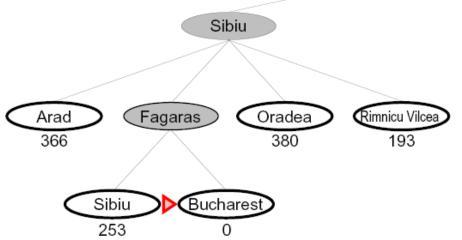
Timisoara

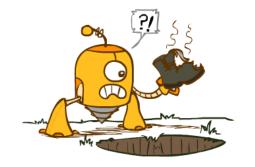
329

Greedy Best-First Search



Arad	366
Bucharest	(
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

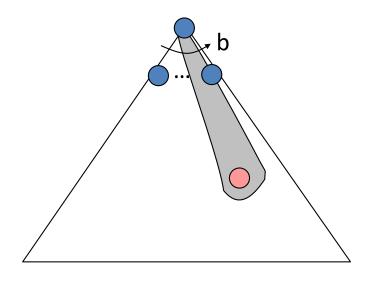


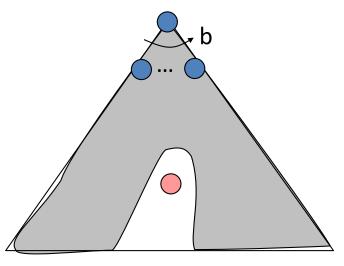


Informed Search

Greedy Analysis

- Best case
 - Take you directly to the nearest goal
- Common case
 - Takes you [less-thanoptimally] to a goal
- Worst case
 - Like badly guided DFS





Greedy Evaluation

Time

- $\mathcal{O}(b^m)$
 - Can improve dramatically with a good heuristic

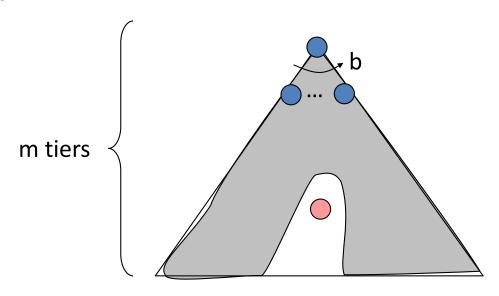
• $\mathcal{O}(b^m)$

Complete

Only if finite

Optimal

No

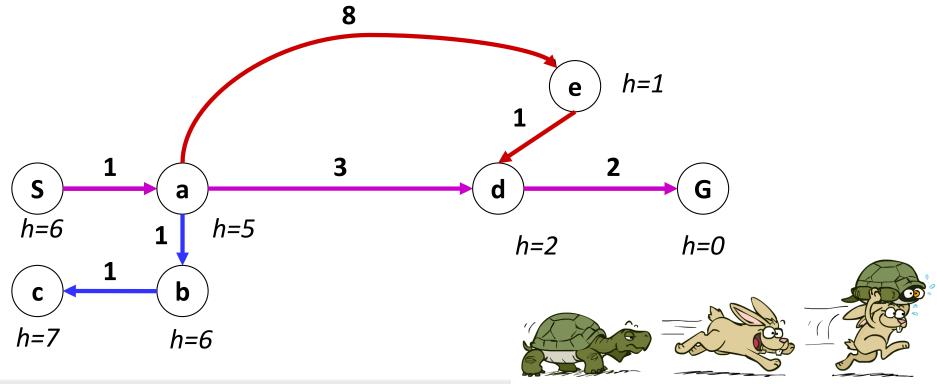


- Empty-Greedy
- Maze-Greedy
- PacMan-Greedy

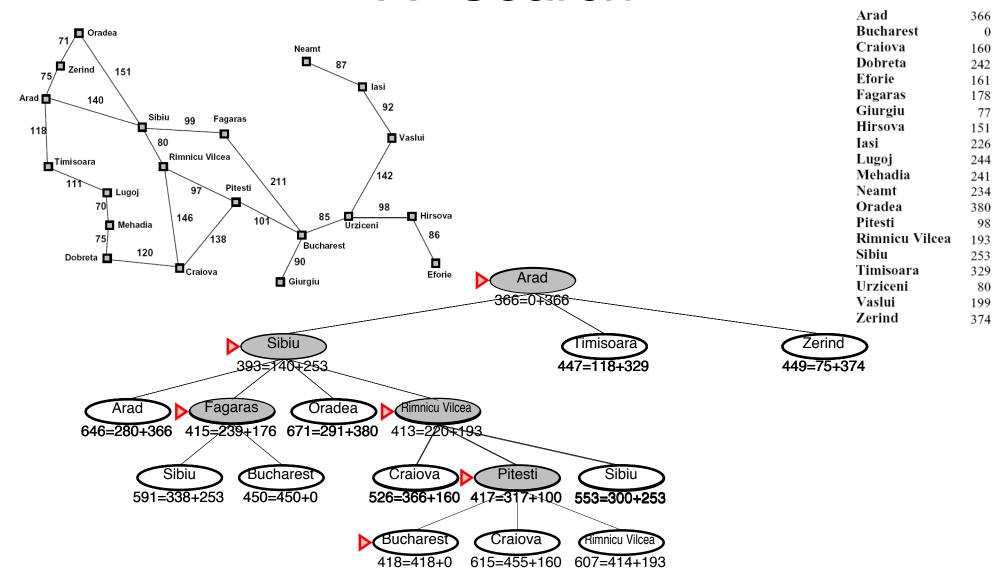
A* Search

Combining UCS and Greedy

- UCS: orders by path, or backward, cost, g(n)
- Greedy: orders by goal proximity, or forward cost, h(n)
- A*: orders by the sum: f(n) = g(n) + h(n)

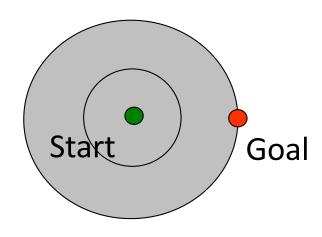


A* Search

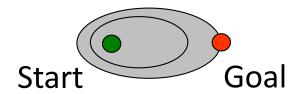


UCS vs. A*

 Uniform-cost expands equally in all "directions"



 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

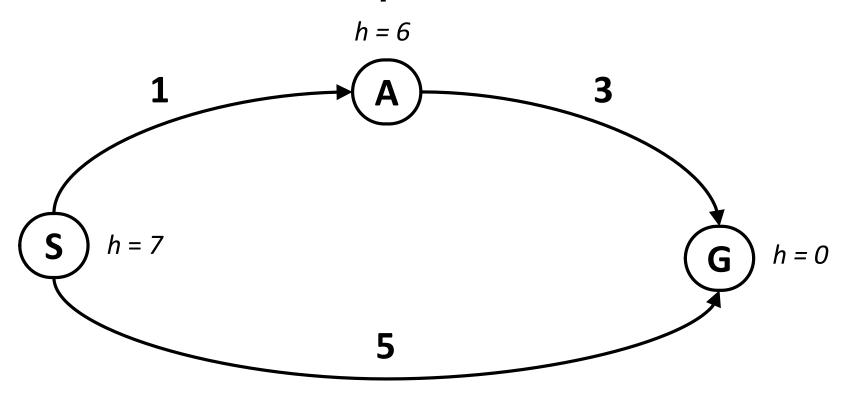


Empty-AStar

Maze-AStar

PacMan-AStar

Is A* Optimal?



To ensure optimality, we need certain properties to hold on the heuristic function

Property #1: Admissibility

 An admissible heuristic never overestimates cost to the goal

• Consequence: f(n) never overestimates

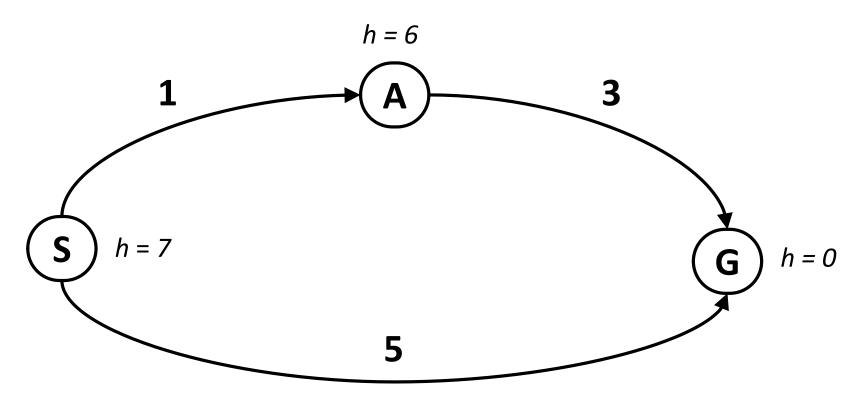
$$-f(n) = g(n) + h(n)$$

-g(n) reflects actual path cost

Example: straight-line distance (SLD)

Informed Search

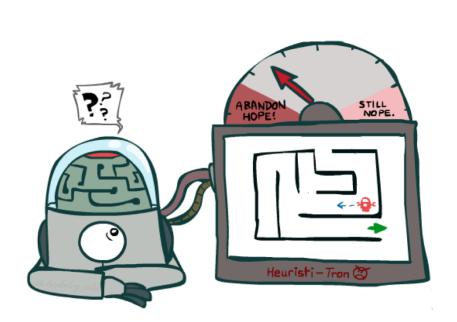
Issue Revisited

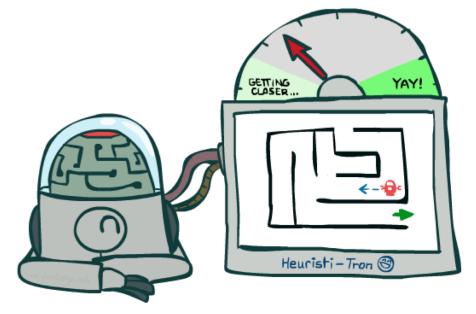


• Is h(n) admissible?

Derbinsky

Idea: Admissibility





Inadmissible (pessimistic) heuristics break optimality by trapping good plans on the fringe

Admissible (optimistic) heuristics slow down bad plans but never outweigh true costs

Checkup

For an admissible heuristic, what must the value of h(g) be, if g is a goal?

In general...

$$0 \le h(n) \le h^*(n)$$

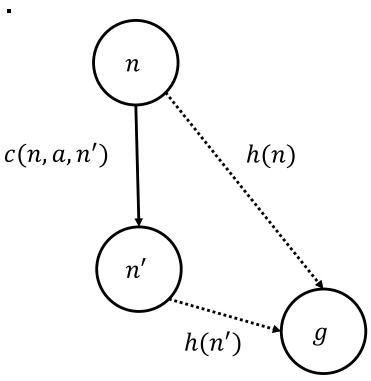
where $h^*(n)$ is **true** cost to a nearest goal

Derbinsky

Property #2: Consistency/Monotonicity

A[n] heuristic is **consistent** iff...

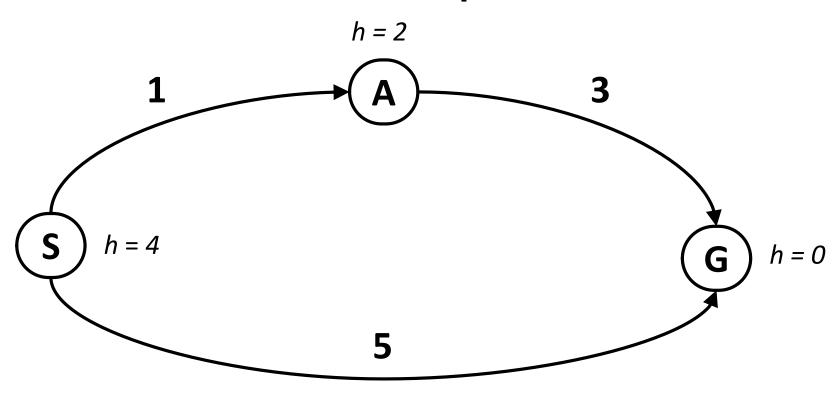
- for every node n,
- and every successor n' of n generated via action a,
- the estimated cost of reaching the goal from n is no greater than the step cost of getting to n' plus the estimated cost of reaching the goal from n'



$$h(n) \le c(n, a, n') + h(n')$$

or
$$h(n) - h(n') \le c(n, a, n')$$

Checkup



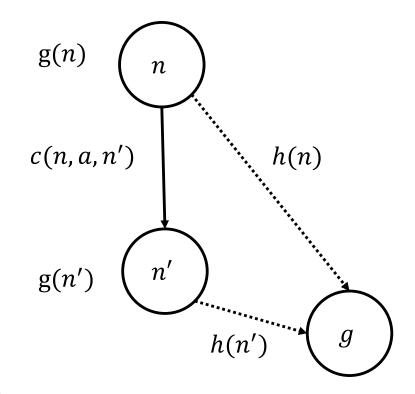
- Is h(n) admissible?
- Is h(n) consistent?

Implication of Consistency f(n) Monotonicity

If a[n] heuristic is consistent, f(n) never decreases along a path

Proof...
$$f(n')$$

= $g(n') + h(n')$
= $g(n) + c(n, a, n') + h(n')$
 $\geq g(n) + h(n) = f(n)$



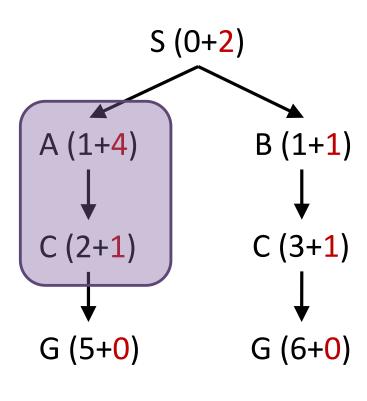
$$h(n) \le c(n, a, n') + h(n')$$

Checkup

State Space Graph

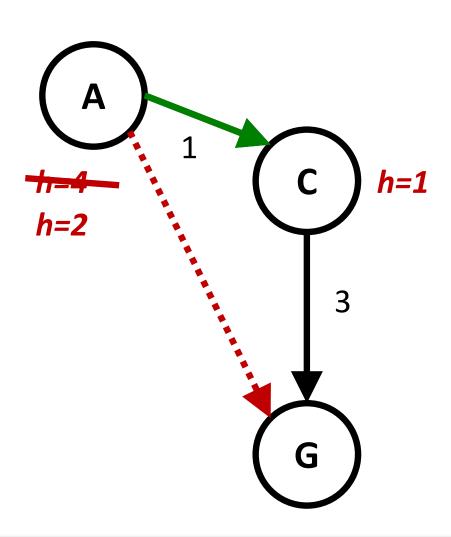
Α h=4 S h=1 h=2 2 3 В h=1 G h=0

Search Tree



- Admissible?
- Consistent?

Consistency of Heuristics



Admissibility

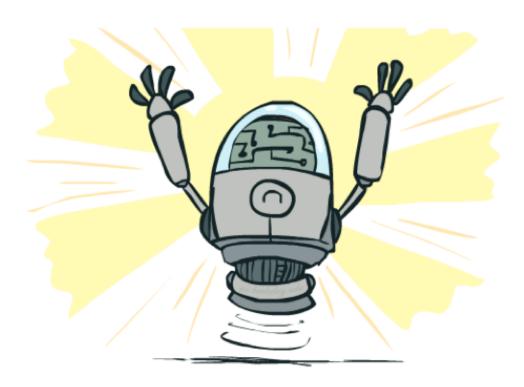
• Heuristic \leq actual cost $h(A) \leq c(A, G)$

Consistency

Heuristic ≤ actual arc

$$h(A) - h(C) \le c(A, C)$$

Optimality of A* Graph Search

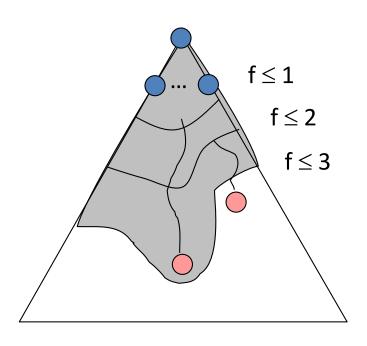


- If h(n) is consistent, A* Graph Search is **optimal**
- All consistent heuristics are admissible
 - Most admissible heuristics are also consistent
 - Most of your time applying A* is finding the right h(n)

Proof Ideas

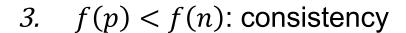
Let's assume positive action costs

- A* expands nodes in increasing total f value (f-contours)
 - Lowest cost gets popped from the fringe
 - Consistency implies path monotonicity
- The optimal goal(s) have the lowest f value, so it must get expanded first

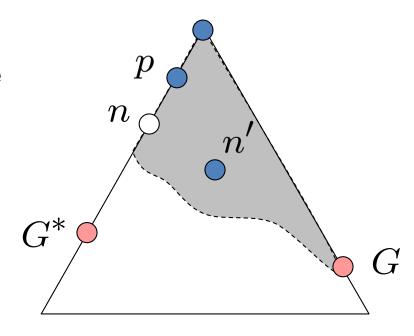


A* Optimality Proof

- Assume some n on path to
 G* isn't in the fringe when we
 need it, b/c some worse n' for the
 same state popped and
 expanded first
- 2. Let p be the ancestor of n that was on the queue when n' was popped



- 4. f(n) < f(n'): n' suboptimality
- 5. p would have been expanded before n': **contradiction!**



A* Evaluation

<u>Time</u>

 Strongly related to the problem and heuristic; exponential w.r.t. error/solution length

Space

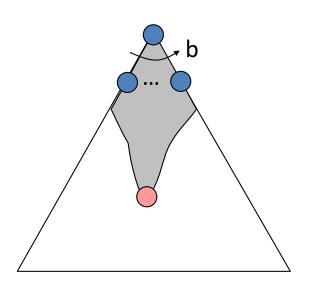
 Whole tree (see book for ID-A, RBFS, SMA*)

Complete

Yes, assuming positive action costs

Optimal

- Yes
 - Loops: assumes consistency
 - Otherwise: assumes admissibility



- A* expands all nodes with $f(n) < C^*$
- A* expands some nodes with $f(n) = C^*$
- A* expands <u>no</u> nodes with $f(n) > C^*$

A* Applications

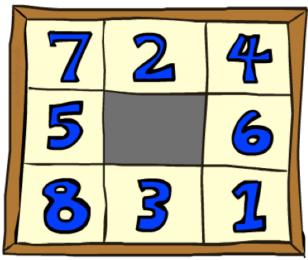
- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- •

Creating Heuristics

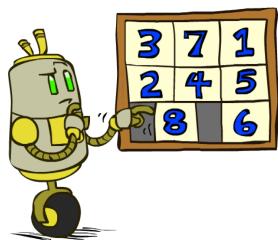
Heuristics Tradeoff

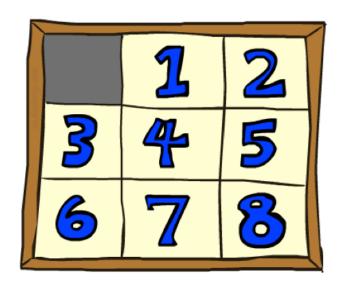
- There is a trade-off between quality of the goal estimate and the expended work per node to generate the estimate
- As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself
 - As an extreme, consider using true cost
- Often, heuristics are solutions to **relaxed** (i.e. easier) problems, where new actions are available
 - Key point: the optimal solution cost of the relaxed problem must not over-estimate the optimal solution cost of the real problem

Example: 8 Puzzle



Start State

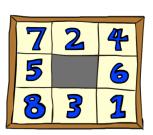


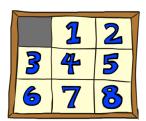


Goal State

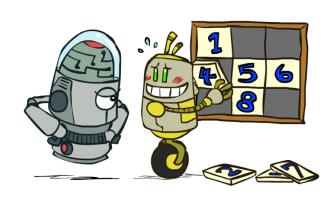
Relaxed Variant #1

- Assume you can move tiles anywhere
- Heuristic: number of tiles misplaced
 - h(start) = 8





Goal State



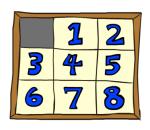
	when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6×10^6		
TILES	13	39	227		

Informed Search

Relaxed Variant #2

 Assume you can move tiles in any direction independent of other tiles





Goal State

- Heuristic: total
 Manhattan distance
 - h(start) = 3 + 1 + ... = 18

Average nodes expanded					
when the optimal path has					

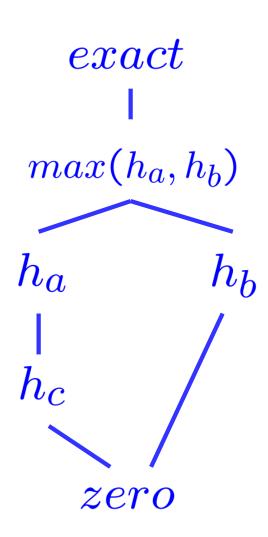
	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

Heuristic Dominance

- Assume consistent heuristics: h_1 , h_2 , ...
- $\forall n \ h_1(n) \geq h_2(n) \equiv h_1 \text{dominates } h_2$
 - $-h_1$ is better for search
- If no heuristic dominates in all states, consider $h_{max}(n) = \max\{h_1(n), h_2(n), \dots\}$
 - $-h_{max}$ is consistent
 - $-h_{max}$ is a dominant heuristic over the set

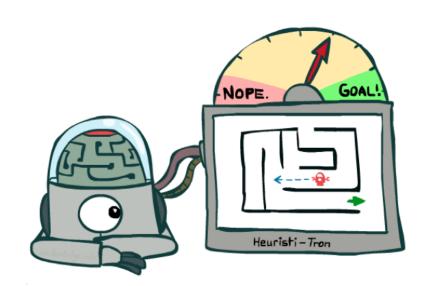
Heuristic Hierarchy

- Bottom is the trivial, or zero, heuristic
 - $\forall n \ h(n) = 0$
- Top is the exact solution



Summary (1)

- Heuristics are problemspecific functions that estimate how close the input state is from a goal state
- Good heuristics can dramatically reduce search cost



Summary (2)

- Best-first search uses an evaluation function
 - UCS: g(n)
 - Greedy: h(n)
 - $A^*: g(n) + h(n)$
- A* is complete and optimal given a consistent heuristic
- Consistent heuristics can be derived from solutions to relaxed problems
 - Exploiting dominance can lead to even better heuristics

