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Outline
1. Learning via feature splits
2. ID3

– Information gain
3. Extensions

– Continuous features
– Gain ratio
– Ensemble learning
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Decision Trees
• Sequence of decisions at 

choice nodes from root to a 
leaf node
– Each choice node splits on a 

single feature

• Can be used for 
classification or regression

• Explicit, easy for humans to 
understand

• Typically very fast at 
testing/prediction time
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https://en.wikipedia.org/wiki/Decision_tree_learning
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Input Data (Weather)
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Output Tree (Weather)
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Training Issues
• Approximation

– Optimal tree-building is NP-complete
– Typically greedy, top-down

• Under/over-fitting
– Occam’s Razor vs. CC/SSN

• Pruning, ensemble methods

• Splitting metric
– Information gain, gain ratio, Gini impurity
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Iterative Dichotomiser 3
• Invented by Ross Quinlan in 1986

– Precursor to C4.5/5

• Categorical data only (can’t split on numbers)

• Greedily consumes features
– Subtrees cannot reconsider previous feature(s) 

for further splits
– Typically produces shallow trees
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ID3: Algorithm Sketch
• If all examples “same”, return f(examples)
• If no more features, return f(examples)
• A = “best” feature

– For each distinct value of A
• branch = ID3( attributes - {A} )
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• “same” = same class
• f(examples) = majority
• “best” = information gain

Now!

Classification
• “same” = std. dev. < ε
• f(examples) = average
• “best” = std. dev. reduction

http://www.saedsayad.com/decision_tree_reg.htm

Regression



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

Shannon Entropy
• Measure of “impurity” 

or uncertainty

• Intuition: the less 
likely the event, the 
more information is 
transmitted
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Entropy Range
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Quantifying Entropy
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H(X) = E[I(X)]

X

i

P (xi)I(xi)
Z

P (x)I(x)dx

Expected	value	of	information
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Intuition for Information

• Shouldn’t be negative

• Events that always occur 
communicate no information

• Information from independent 
events are additive
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I(X) = . . .

I(X) � 0

I(1) = 0

I(X1, X2) =

I(X1) + I(X2)
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Quantifying Information
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I(X) = logb
1

P (X)

= � logb P (X)

Log	Base	=	Units:	2=bit	(binary	digit),	3=trit,	e=nat

H(X) = �
X

i

P (xi) logb P (xi)

Log	Base	=	Units:	2=shannon/bit
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Example: Fair Coin Toss
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I(heads) = log2(
1

0.5
) = log2 2 = 1 bit

I(tails) = log2(
1

0.5
) = log2 2 = 1 bit

H(fair toss) = (0.5)(1) + (0.5)(1) =

= 1 shannon
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Example: Double Headed Coin
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H(double head) = (1) · I(head)

= (1) · log2(
1

1

)

= (1) · (0)
= 0 shannons
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Exercise: Weighted Coin
Compute the entropy of a coin that will land 
on heads about 25% of the time, and tails 
the remaining 75%.

March 27, 2017

Supervised Learning via Decision Trees

16



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

Answer
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H(weighted toss) = (0.25) · I(head) + (0.75) · I(tails)

= (0.25) · log2
1

0.25
+ (0.75) · log2

1

0.75
= 0.81 shannons



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

Entropy vs. P
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Exercise
Calculate the entropy of the following data
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Answer
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H(data) =

16

30

· I(green circle) +

14

30

· I(purple cross)

=

16

30

· log2
30

16

+

14

30

· log2
30

14

= 0.99679 shannons
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Bounds on Entropy
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H(X) � 0

H(X) = 0 () 9x 2 X(P (x) = 1)

Hb(X)  logb(|X |)
|X | denotes the number of elements in the range of X

Hb(X) = logb(|X |) () X has a uniform distribution over |X |
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Information Gain
To use entropy for a splitting metric, we 
consider the information gain of an action 
as the resulting change in entropy
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IG(T, a) = H(T )�H(T |a)

= H(T )�
X

i

|Ti|
|T |H(Ti)

Average	Entropy	of	the	children
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Example Split
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{16
30

,
14

30
}

{ 4

17
,
13

17
}

{12
13

,
1

13
}
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Example Information Gain
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H1 =
4

17
log2

17

4
+

13

17
log2

17

13
⇠ 0.79

H2 =
12

13
log2

13

12
+

1

13
log2

13

1
⇠ 0.39

IG = H(T )� (
17

30
H1 +

13

30
H2)

= 0.99679� 0.62

= 0.38 shannons
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Exercise
Consider the following dataset. Compute the 
information gain for each of the non-target 
attributes. Decide which attribute is the best 
to split on.
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X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B
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H(C)
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H(C) = �(0.5) log2 0.5� (0.5) log2 0.5

= 1 shannon

X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B
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IG(C,X)
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X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B

H(C|X) =
3

4
[
2

3
log2

3

2
+

1

3
log2

3

1
] +

1

4
[0]

= 0.689 shannons

IG(C,X) = 1� 0.689 = 0.311 shannons
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IG(C,Y)
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X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B

H(C|Y ) =

1

2

[0] +

1

2

[0]

= 0 shannons

IG(C, Y ) = 1� 0 = 1 shannon
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IG(C,Z)
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X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B

IG(C,Z) = 1� 1 = 0 shannons

H(C|Y ) =

1

2

[1] +

1

2

[1]

= 1 shannons
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Feature Split Choice
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IG: 0.311 1.0 0.0

X Y Z Class
1 1 1 A

1 1 0 A

0 0 1 B

1 0 0 B

Y

A B

1 0
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ID3: Algorithm Sketch
• If all examples “same”, return f(examples)
• If no more features, return f(examples)
• A = “best” feature

– For each distinct value of A
• branch = ID3( attributes - {A} )
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• “same” = same class
• f(examples) = majority
• “best” = information gain

Classification
• “same” = std. dev. < ε
• f(examples) = average
• “best” = std. dev. reduction

http://www.saedsayad.com/decision_tree_reg.htm

Regression
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Example
No	Surfacing Flippers? Fish?

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No Yes No
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0. Preliminaries
No	Surfacing Flippers? Fish?

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No Yes No
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• Examples not the same class
• Features remain
• H(Fish?) = 0.971

!
"
log!

"
!
+ '
"
log!

"
'
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1a: No Surfacing
No	Surfacing Flippers? Fish?

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No Yes No
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• H(Fish? | No Surfacing) = 0.55
'
"
(!
'
log!

'
!
+ )
'
log!

'
)
)

• IG(Fish?, No Surfacing) = 0.42
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1b: Flippers?
No	Surfacing Flippers? Fish?

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No Yes No

March 27, 2017

Supervised Learning via Decision Trees

35

• H(Fish? | Flippers?) = 0.8
+
"
(1) + )

"
(0)

• IG(Fish?, Flippers) = 0.17
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2: Split on No Surfacing

Flippers? Fish?
Yes Yes

Yes Yes

No No

March 27, 2017

Supervised Learning via Decision Trees

36

• Recurse(left)

Flippers? Fish?
Yes No

Yes No

No	Surfacing

No Yes
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2. Left

• Examples the same class!
– Return class leaf node
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Flippers? Fish?
Yes No

Yes No
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2: Split on No Surfacing

Flippers? Fish?
Yes Yes

Yes Yes

No No
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• Recurse(right)

No	Surfacing

No Yes

No
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2. Right

• Examples not the same class
• One feature remaining

– Split!

March 27, 2017

Supervised Learning via Decision Trees

39

Flippers? Fish?
Yes Yes

Yes Yes

No No
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3. Split on Flippers

• Recurse(left)
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Fish?
No

Flippers

No Yes

Fish?
Yes

Yes
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3. Left

• Examples the same class!
– Return class leaf node
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Fish?
No



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

3. Split on Flippers

• Recurse(right)
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Flippers

No Yes

Fish?
Yes

Yes

No
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3. Right

• Examples the same class!
– Return class leaf node

March 27, 2017

Supervised Learning via Decision Trees

43

Fish?
Yes

Yes
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3. Split on Flippers

• Return!
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Flippers

No Yes

No Yes
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2: Split on No Surfacing
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• Done!

No	Surfacing

No Yes

No Flippers

No Yes

No YesNo	Surfacing Flippers? Fish
?

Yes Yes Yes

Yes Yes Yes

Yes No No

No Yes No

No Yes No
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Additional Base Case
• What to do given the 

following example 
input to ID3?
– No additional features 

upon which to split

• For classification, 
majority vote
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Fish?

Yes

Yes

No

No

No

No
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Extensions
• Generalization
• Continuous features
• Ensemble learning
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Generalization
• Information gain biases towards features 

with many distinct values
– Consider the value of CC/SSN

• Approaches to mediate
– Gain ratio is a metric that divides each IG 

term by “SplitInfo”, which is large for features 
with many partitions (used in C4.5)

– There are several pruning techniques that 
replace subtrees
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Continuous Features
• You can always discretize/bin yourself

– Run the risk of suboptimal depending on tree location

• Simple approach: binary splits, whereby left is ≤ 
threshold

• Consider each distinct value a threshold, calculate 
gain
– Computationally expensive for large numbers of 

values

• C4.5 penalizes similar to large distinct sets
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Ensemble Learning
• The Random Forest algorithm is an 

exemplar of using multiple trees
– Each tree is trained via bootstrapped data (i.e. 

sampled with replacement)
– Each choice node feature is selected from a 

random subset of overall
– Decisions are bagged (i.e. aggregated over 

many trees)
– Can use a validation set to weight via 

expected accuracy of each tree
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Checkup
• ML task(s)?

– Classification: binary/multi-class?
• Feature type(s)?
• Implicit/explicit?
• Parametric?
• Online?
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Summary: ID3/Decision Trees
• Practicality

– Easy, generally applicable
– Need know nothing about the underlying process
– Very popular, easy to understand

• Efficiency
– Training: relatively fast, batch
– Testing: typically very fast

• Performance
– Possible to get stuck in suboptimal trees

• Methods to help, hard in general
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