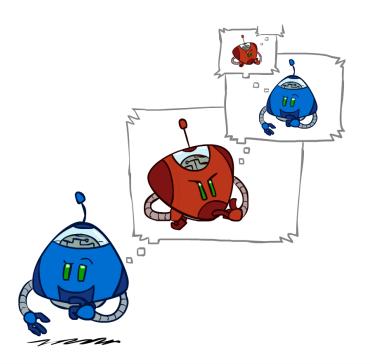
Adversarial Search Lecture 6

How can we use search to plan ahead when other agents are planning against us?

Agenda

- Games: context, history
- Searching via Minimax
- Scaling
 - $-\alpha \beta$ pruning
 - Depth-limiting
 - Evaluation functions
- Handling uncertainty with Expectiminimax



Characterizing Games

- There are many kinds of games, and several ways to classify them
 - Deterministic vs. stochastic
 - [Im]perfect information
 - One, two, multi-player
 - Utility (how agents value outcomes)
 - Zero-sum
- Algorithmic goal: calculate a strategy (or policy) that decides a move in each state

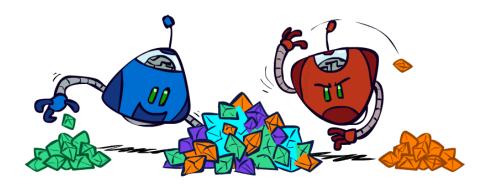
Utility

Zero/Constant-Sum

- Opposite utilities
- Adversarial, pure competition

General Games

- Independent utilities
- Cooperation, indifference, competition, and more are all possible



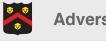
Derbinsky

Examples: Perception vs. Chance

	Deterministic	Stochastic
Perfect	Chess, Checkers, Go, Othello	Backgammon, Monopoly
Imperfect	Battleship	Bridge, Poker, Scrabble

Checkers

- 1950: First computer player
- 1994: First computer champion (Chinook) ended 40-year-reign of human champion Marion Tinsley using complete 8-piece endgame
- 1995: defended against Don Lafferty
- 2007: solved!

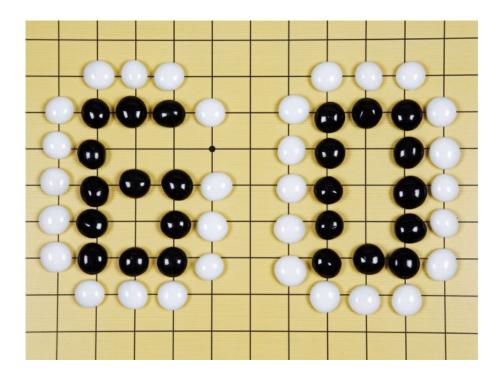


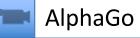
Chess

- 1997: Deep Blue defeats human champion Gary Kasparov in a six-game match
- Deep Blue examined 200M positions per second, used very sophisticated evaluation and undisclosed methods for extending some lines of search up to 40 ply
- Current programs are even better, if less historic

Go

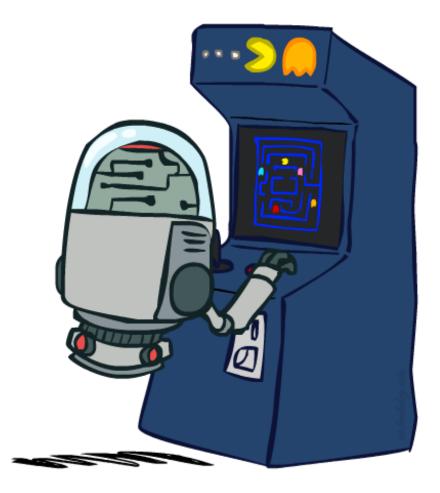
- Until recently, were not competitive at champion level
- 2016: beaten European champion
 - World champion game pending...
- ANNs for policy (what to do) and evaluation (how good is a board state)

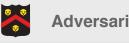




More Progress

- Othello: 1997, defeated world champion
- Bridge: 1998, competitive with human champions
- Scrabble: 2006, defeated world champion



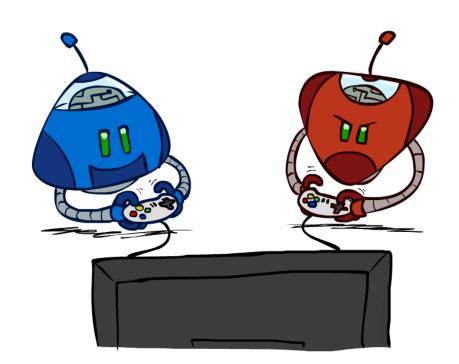


Game Formalism

- States: S (start at S_0)
- Players: *P* {1, ... *N*} (typically take turns)
- Actions: *Action*(*s*), returns legal options
- Transition function: $S \times A \rightarrow S$
- Terminal test: *Terminal(s)*, returns T/F
- Utility: $S \times P \to \mathbb{R}$
- Solution for a player is a **policy**: $S \rightarrow A$

Game Plan :)

- Start with deterministic, twoplayer adversarial games
- Issues to come
 - Multiple players
 - Resource limits
 - Stochasticity

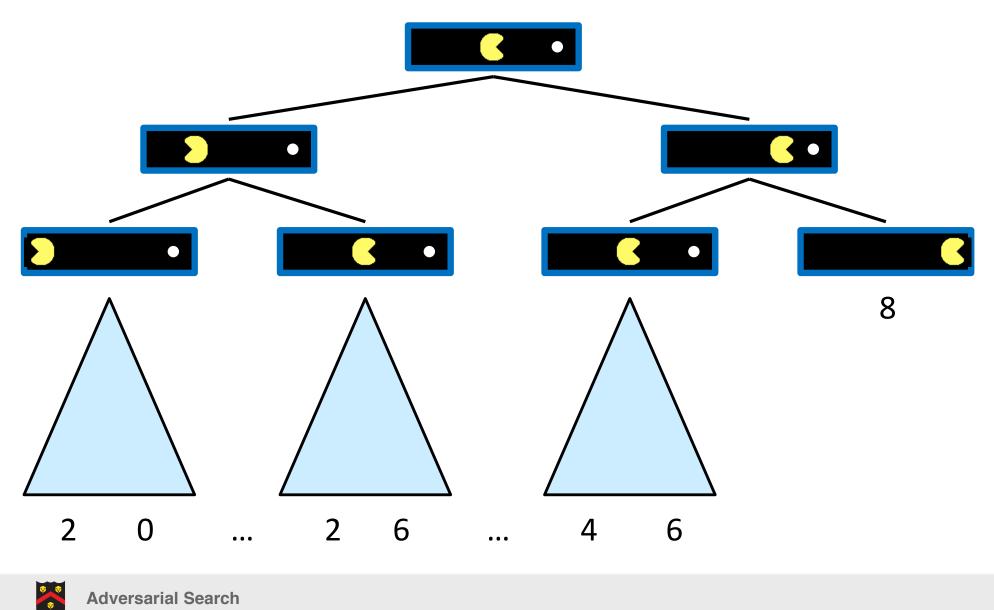


Wentworth Institute of Technology

COMP3770 – Artificial Intelligence

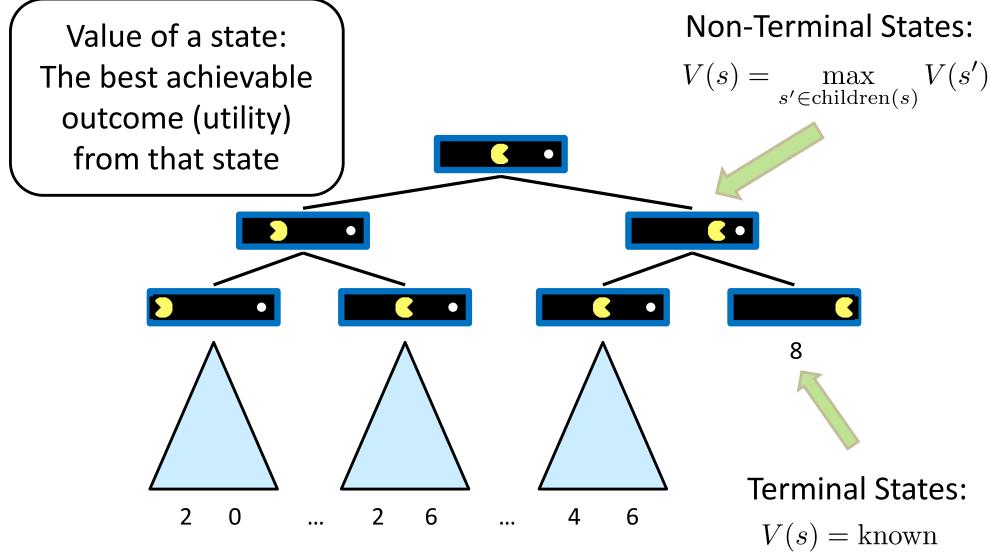
Spring 2017 | Derbinsky

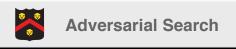
Single-Agent Game Tree



Spring 2017 Derbinsky

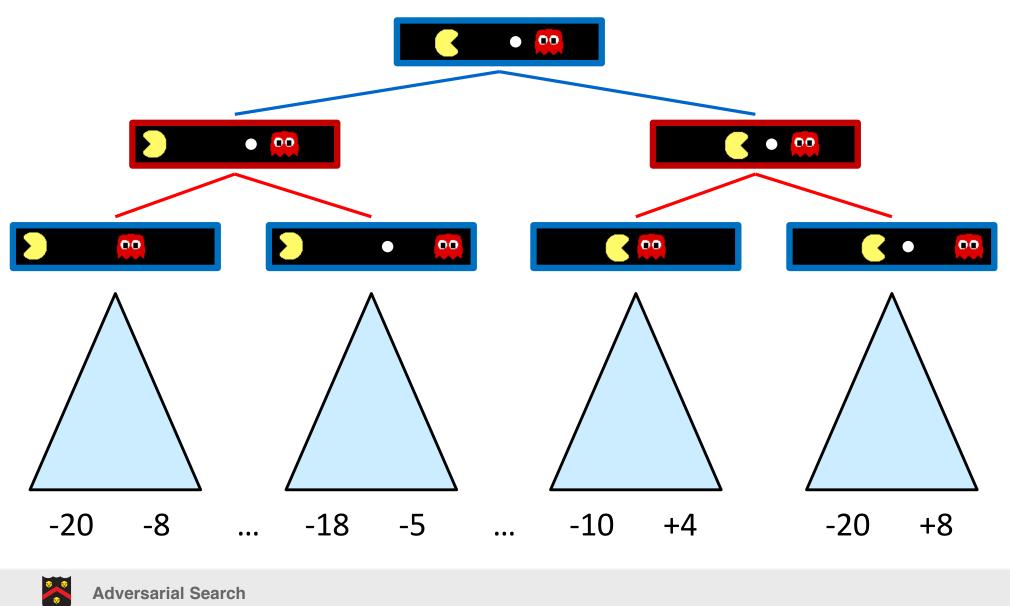
Value of a State





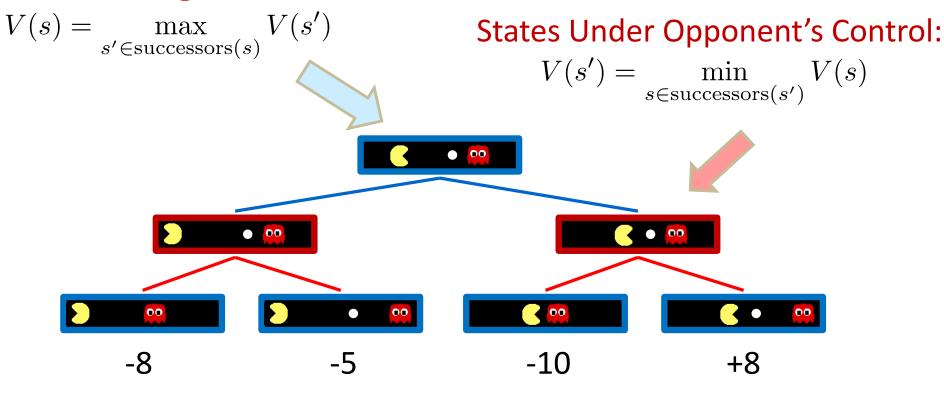
Spring 2017 | Derbinsky

Adversarial Game Trees



Minimax Values

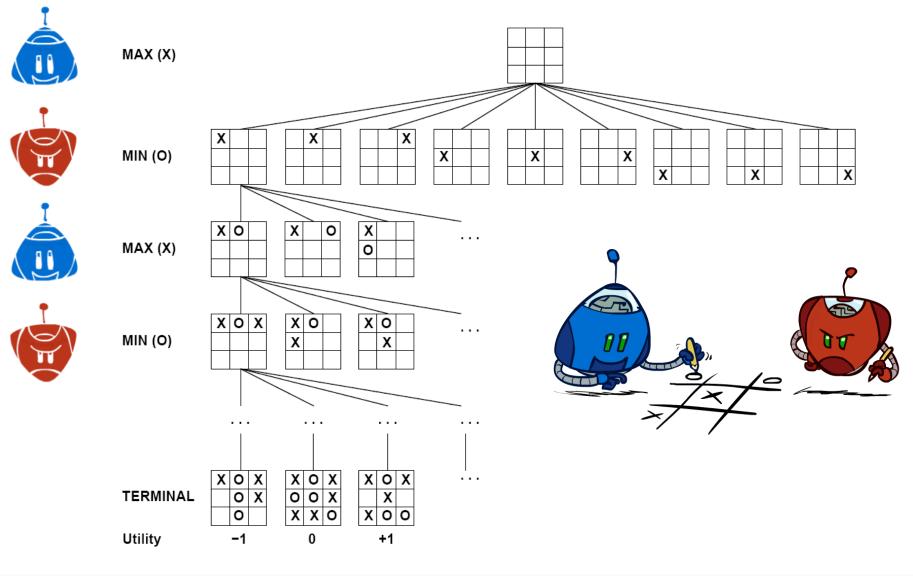
States Under Agent's Control:



Terminal States:

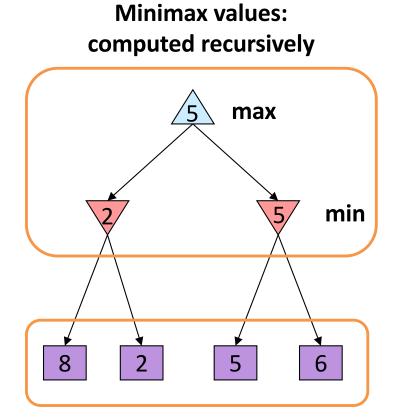
V(s) =known

Tic-Tac-Toe Game Tree



Adversarial Search via Minimax

- Deterministic, zero-sum
 - Tic-tac-toe, chess
 - One player maximizes
 - The other minimizes
- Minimax search
 - A search tree
 - Players alternate turns
 - Compute each node's *minimax value*: the best achievable utility against a rational (optimal) adversary



Terminal values: part of the game

Minimax Implementation

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is MIN: return min-value(state)

def max-value(state):

initialize v = -∞
for each successor of state:
 v = max(v, value(successor))
return v

def min-value(state):
 initialize v = +∞
 for each successor of state:
 v = min(v, value(successor))
 return v

Minimax Evaluation

<u>Time</u>

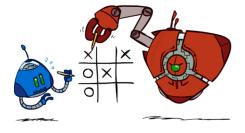
• $\mathcal{O}(b^m)$ - For chess: $b \approx 35, m \approx 100$

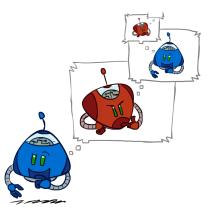
<u>Space</u>

• *O*(*bm*)

<u>Complete</u>

• Only if finite

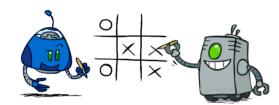




Minimax-Min

<u>Optimal</u>

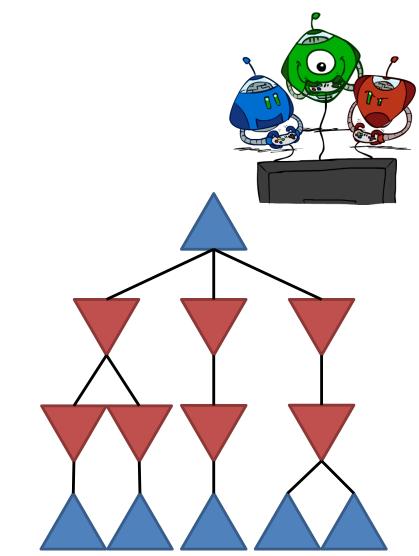
 Yes, against optimal opponent



Multiple Players

Add a **ply** per player

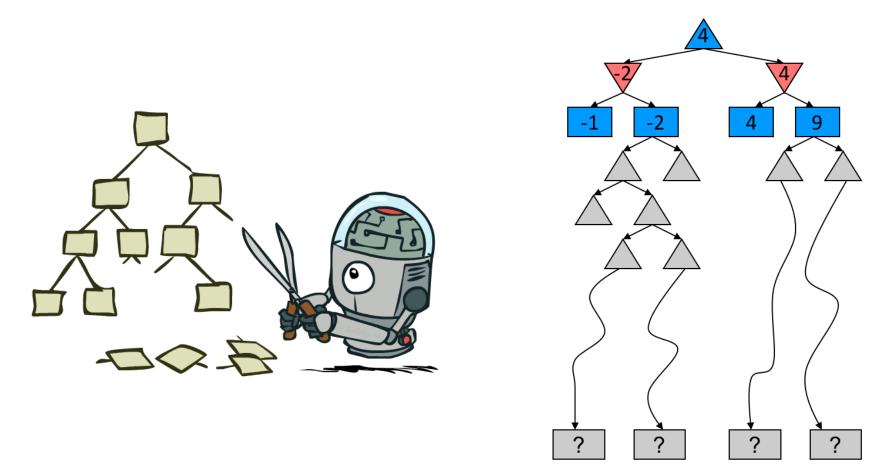
- Independent utility: use a vector of values, each player MAX own utility
- Zero-sum: each team sequentially MIN/MAX
 - In Pacman, have multiple MIN layers for each ghost per 1 Pacman move



Scaling to Larger Games

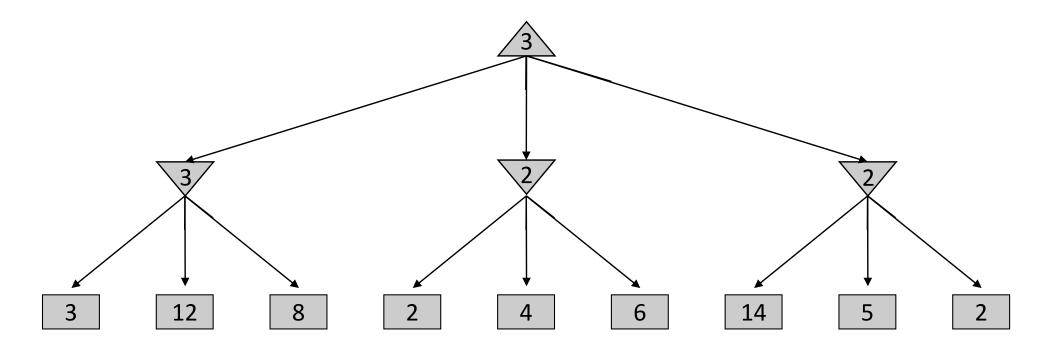
Tree Pruning

Depth-Limiting + Evaluation

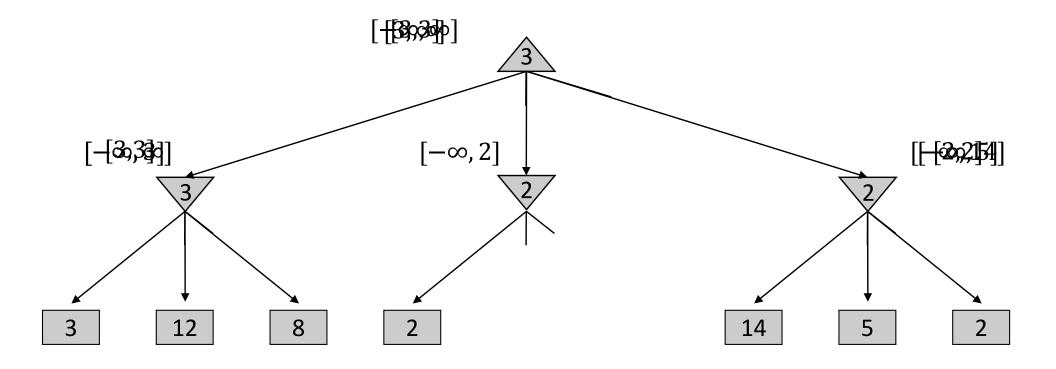


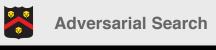
Wentworth Institute of TechnologyCOMP3770 – Artificial Intelligence

Minimax Example

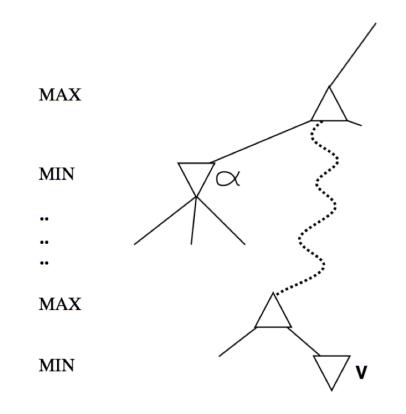


Minimax Pruning





General Case



- α is the best value (to *MAX*) found so far off the current path
- If V is worse than α , *MAX* will avoid it prune that branch
- Define β similarly for *MIN*

Alpha-Beta Pruning

```
\begin{array}{l} \mbox{def min-value(state, } \alpha, \beta): \\ \mbox{initialize } v = +\infty \\ \mbox{for each successor of state:} \\ v = min(v, value(successor, \alpha, \beta)) \\ \mbox{if } v \leq \alpha \mbox{ return } v \\ \beta = min(\beta, v) \\ \mbox{return } v \end{array}
```

α : MAX's best option on path β : MIN's best option on path

```
def max-value(state, \alpha, \beta):

initialize v = -\infty

for each successor of state:

v = \max(v, value(successor, \alpha, \beta))

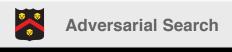
if v \ge \beta return v

\alpha = \max(\alpha, v)

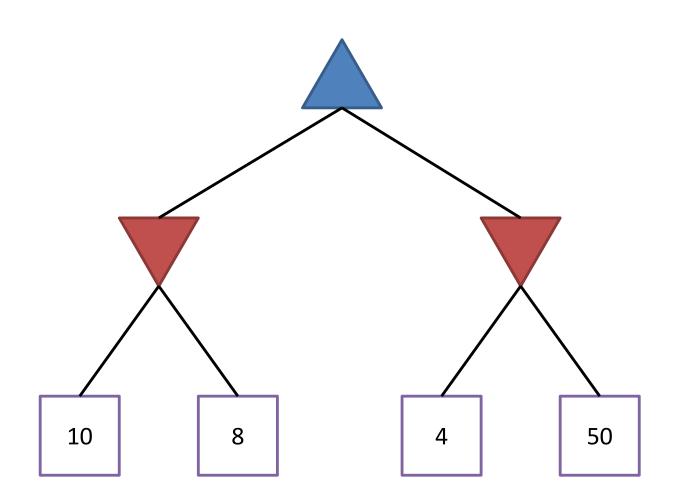
return v
```


Alpha-Beta Properties

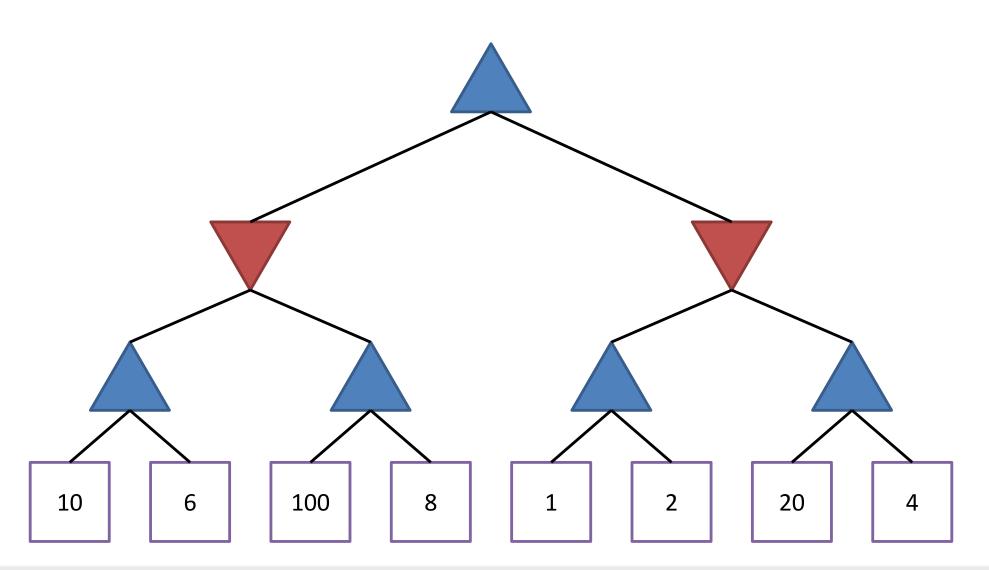
- Has no effect on minimax value computed for the root!
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - Time complexity drops to $\mathcal{O}(b^{m/2})$
 - Doubles solvable depth!
 - Full search of, e.g. chess, is still hopeless...
- This is a simple example of metareasoning (computing about what to compute)



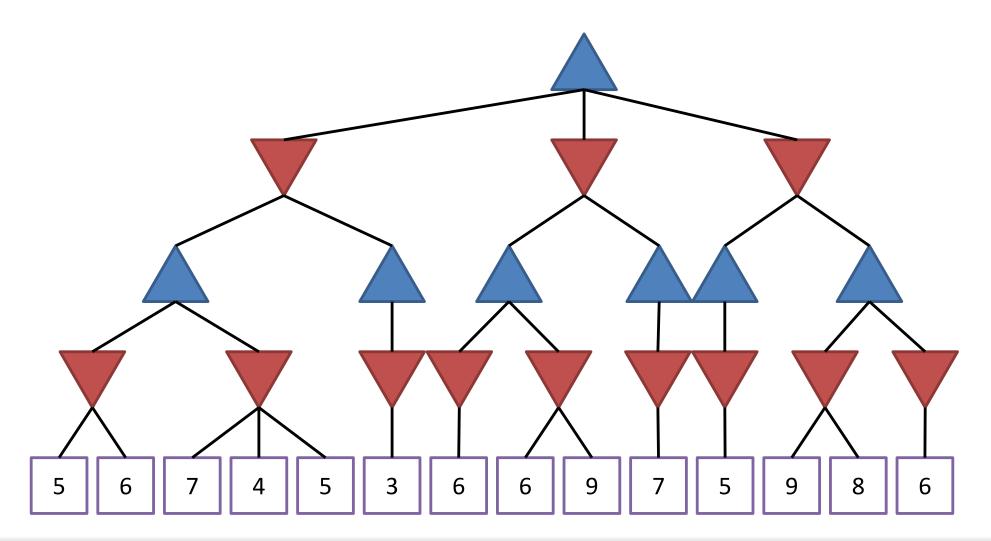
Checkup #1



Checkup #2



Checkup #3

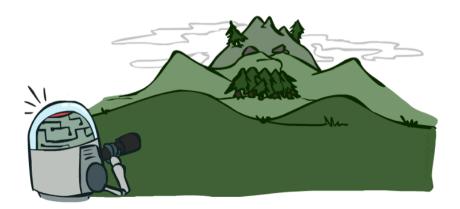


Resource Limits

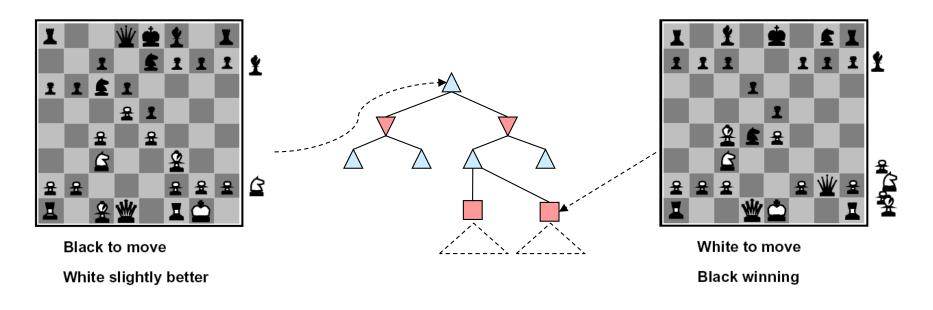
- Problem: in realistic games, cannot search to leaves!
- Solution: depth-limited search
 - 1. Search only to a limited depth in the tree
 - 2. Replace terminal utilities with an **evaluation function** for non-terminal positions
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Search Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation



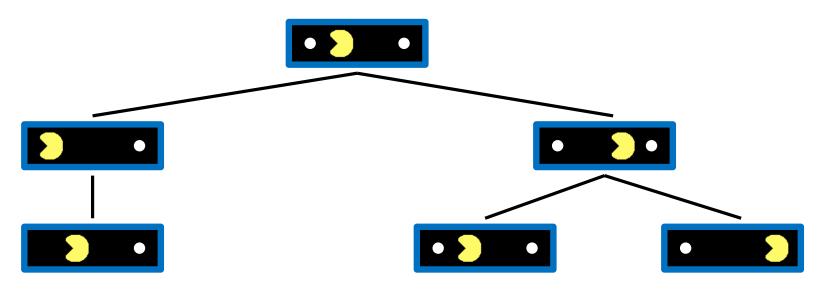
Evaluation Functions



- Evaluation functions score non-terminals in depthlimited search
- Ideal: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:
 e.g. f₁(s) = (num white queens num black queens)

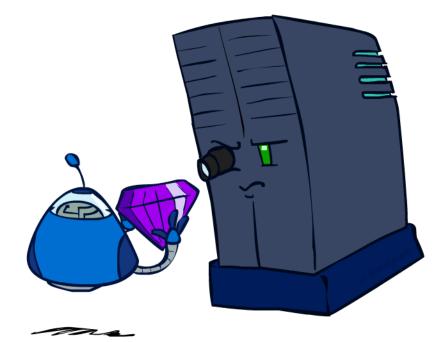
Spring 2017 Derbinsky

Why Pacman Starves/Thrashes

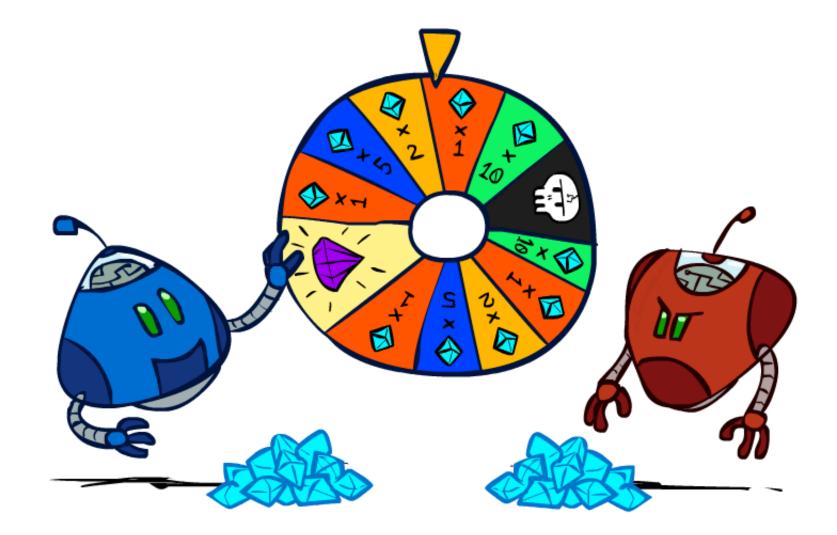


- A danger of replanning agents!
 - He knows his score will go up by eating a dot now
 - He knows his score will go up just as much by eating a dot later
 - There are no point-scoring opportunities after eating a dot (within the horizon, two here)
 - Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

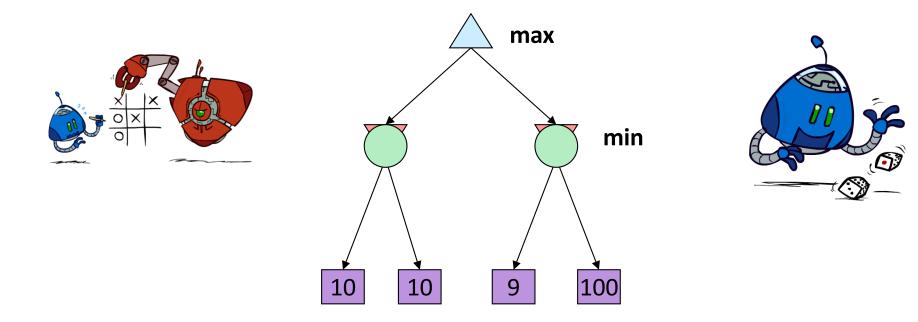
Pacman/Ghost Evaluation



Nondeterministic Games



Worst Case vs. Average Case

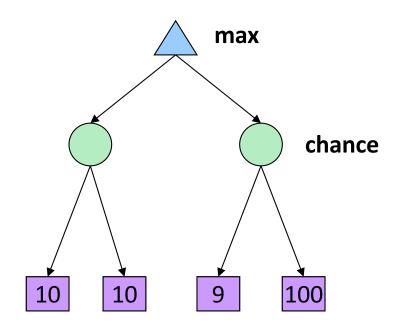


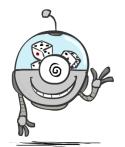
In nondeterministic games, chance is introduced by non-opponent stochasticity (e.g. dice, card-shuffling)

Spring 2017 Derbinsky

Expectiminimax Search

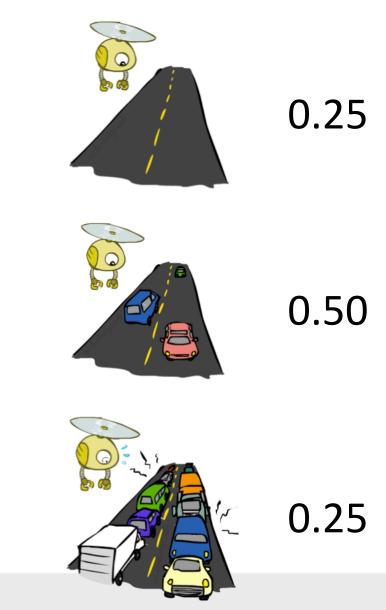
- Why wouldn't we know what the ٠ result of an action will be?
 - Explicit randomness: rolling dice
 - Unpredictable opponents: the ghosts respond randomly
 - Actions can fail: when moving a robot, wheels might slip
- Values should now reflect ٠ average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the ٠ average score under optimal play
 - Max nodes as in minimax search
 - Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their **expected utilities**





Reminder: Probabilities

- A random variable represents an event whose outcome is unknown
- A probability distribution is an assignment of weights to outcomes
- Example: Traffic on freeway
 - Random variable:
 - T = whether there's traffic
 - Outcomes:
 - T in {none, light, heavy}
 - Distribution:
 - P(T=none) = 0.25
 - P(T=light) = 0.50
 - P(T=heavy) = 0.25



Reminder: Expectations

- The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?



Expectiminimax Implementation

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state) if the next agent is EXP: return exp-value(state)

def max-value(state):

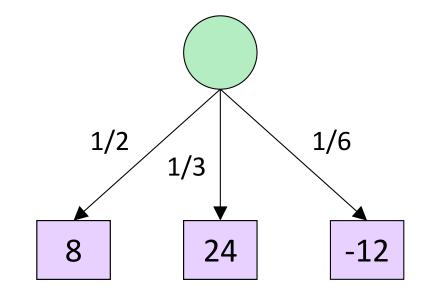
initialize v = -∞
for each successor of state:
 v = max(v, value(successor))
return v

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

Spring 2017 | Derbinsky

Expectiminimax Example

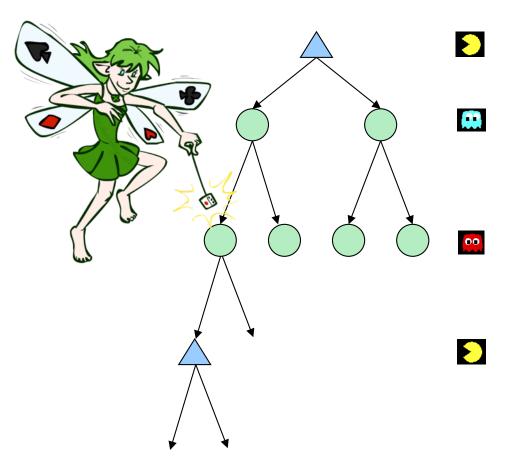
def exp-value(state):
 initialize v = 0
 for each successor of state:
 p = probability(successor)
 v += p * value(successor)
 return v



$$v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10$$

Where Do Probabilities Come From?

- In expectiminimax search, we have a probabilistic model of how the opponent (or environment) will behave in any state
 - Model could be a simple uniform distribution (roll a die)
 - Model could be sophisticated and require a great deal of computation
 - We have a chance node for any outcome out of our control: opponent or environment
 - The model might say that adversarial actions are likely!
- For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes



Summary

- A game can be formulated as a search problem, with a solution **policy** $(S \rightarrow A)$
- For deterministic games, the **minimax** algorithm plays optimally (assuming the **game tree** is reasonable)
- To help with resource limitations, standard practice is to employ alpha-beta pruning and depth-limited search (with an evaluation function)
- To model uncertainty, the expectiminimax algorithm introduces chance nodes that employ a probability distribution over actions to model expected utility

