
Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Problem-Solving via Search
Lecture 3

What is a search problem?

How do search algorithms work and how
do we evaluate their performance?

February 1, 2017

Problem-Solving via Search

1

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Agenda
• An example problem
• Problem formulation
• Infrastructure for search algorithms

– Complexity analysis

February 1, 2017

Problem-Solving via Search

2

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

A Motivating Problem
• Start: Arad, Romania
• Goal: Bucharest, Romania

– Roads leading to Sibiu, Timisoara, Zerind

What is a rational
agent to do?

February 1, 2017

Problem-Solving via Search

3

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Add Geographical Knowledge

February 1, 2017

Problem-Solving via Search

4

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Add Abstraction

February 1, 2017

Problem-Solving via Search

5

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Describe the Task
• Observability
• Certainty
• Representation
• A priori

• Full
• Deterministic
• Discrete
• Known

February 1, 2017

Problem-Solving via Search

6

Under these conditions we can search for a
problem solution, a fixed sequence of actions
• Given a perfect model, can be done open-loop

(i.e. ignore percepts)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Search Problem Formalism
Defined via the following components:
• The initial state the agent starts in
• A successor/transition function

S(x) = {action -> state, cost}
• A goal test, which returns true if a given state is a goal state

G(x) = true/false
• A path cost that assigns a numeric cost to each path

– Typically assumed to be sum of action costs

A solution is a sequence of actions leading from initial state to a
goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly define
the state space, the set of all reachable states

February 1, 2017

Problem-Solving via Search

7

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: Romanian Travel
• Initial state

– Arad
• Successor

– Adjacency,
cost=distance

• Goal test
– City == Bucharest

• State space
– Cities

February 1, 2017

Problem-Solving via Search

8

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: Pacman
• Initial state

• Successor function

• State space

• Goal test: no more food (e.g.)

February 1, 2017

Problem-Solving via Search

9

“N”,	1.0

“E”,	1.0

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

State Abstraction
• Often world states are absurdly complex

• To solve a particular problem, we abstract
the search state to only represent details
necessary to solve the problem

February 1, 2017

Problem-Solving via Search

10

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example Abstractions

• States: (x,y)
• Actions: NSEW
• Successor: (x’,y’)
• Goal test: (x,y)=END

• States: {(x,y), T/F grid}
• Actions: NSEW
• Successor: (x’,y’),

possibly T/F change
• Goal test: grid = all F’s

February 1, 2017

Problem-Solving via Search

11

Path Planning Eat All the Dots

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Abstraction is Necessary
World state
• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

How many…
• World states?

– 120x(230)x(122)x4
• States for path planning?

– 120
• States for eat-all-dots?

– 120x(230)

February 1, 2017

Problem-Solving via Search

12

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Exercise
Describe the vacuum-cleaner world search
problem:

– World state representation
– Search state representation
– Transition model

• State space
– Goal test

February 1, 2017

Problem-Solving via Search

13

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Solution State Space Graph
R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

February 1, 2017

Problem-Solving via Search

14

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

State Space Graph
• State space graph: A

mathematical representation of
a search problem
– Nodes are (abstracted) world

configurations
– Arcs represent successors

(action results)
– The goal test is a set of goal

node(s)

• In a search graph, each state
occurs only once!

• We can rarely build this full
graph in memory (it’s too
big), but it’s a useful idea

February 1, 2017

Problem-Solving via Search

15

S

G

d

b

p q

c

e

h

a

f

r

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Search Tree
• A “what if” tree of plans and

their outcomes

• The start state is the root node

• Children correspond to
successors

• Nodes show states, but
correspond to PLANS that
achieve those states

• For most problems, we can
never actually build the
whole tree

February 1, 2017

Problem-Solving via Search

16

“E”,	1.0“N”,	1.0

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

State Space Graph vs. Search Tree

• Each NODE in in the search tree is an entire PATH in
the state space graph.

• We construct both on demand – and we construct as
little as possible.

February 1, 2017

Problem-Solving via Search

17

S

G

d

b

p q

c

e

h

a

f

r

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Exercise
Consider the following
4-state state space
graph…

How big is its search
tree (from S)?

February 1, 2017

Problem-Solving via Search

18

S G

b

a 1

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Searching for Solutions
Basic idea: incrementally build a
search tree until a goal state is found

• Root = initial state

• Expand via transition function to
create new nodes

• Nodes that haven’t been
expanded are leaf nodes and
form the frontier (open list)

• Different search strategies (next
lecture) choose next node to
expand (as few as possible!)

• Use a closed list to prevent
expanding the same state more
than once

February 1, 2017

Problem-Solving via Search

19

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

General Algorithm

February 1, 2017

Problem-Solving via Search

20

Queue (FIFO)
Stack (LIFO)
Priority Queue

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Evaluating a Search Strategy

• Completeness: does it
always find a solution if
one exists?

• Optimality: does it
always find a least-cost
solution?

• Time Complexity:
number of nodes
generated/expanded

• Space Complexity:
maximum number of
nodes in memory

February 1, 2017

Problem-Solving via Search

21

Solution Efficiency

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Computational Complexity (A.1)
• We are going to be comparing several algorithms

– How do we tell if one is faster/leaner than another?

• Benchmarking involves running the algorithm on
a computer and measuring performance (e.g. time
in sec, memory in bytes)
– Unsatisfactory: specific to machine, implementation,

compiler, inputs, …

• Complexity Analysis is a mathematical approach
that abstracts away from these details

February 1, 2017

Problem-Solving via Search

22

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Asymptotic Analysis
Basic idea: get a sense of “rate of growth” of an
algorithm, which tells us how “bad” it will get as
problem size grows

Example

February 1, 2017

Problem-Solving via Search

23

def summation(l):
sum = 0
for n in l:

sum += n
return sum

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Step 1: Identify Size Parameter
• We need to abstract

over the input and just
identify what parameter
characterizes the size
of the input

• For the example what
matters is the length of
the input list
– We’ll refer to this as n

February 1, 2017

Problem-Solving via Search

24

def summation(l):
sum = 0
for n in l:

sum += n
return sum

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Step 2: Identify Performance Measure
• Again, abstract over the

implementation and find
a measure that reflects
running time (or
memory usage), not
tied to a particular
computer

• In this case it could be
lines executed, or
operations (additions,
assignments)
performed
– Call this f(n)

February 1, 2017

Problem-Solving via Search

25

def summation(l):
sum = 0
for n in l:

sum += n
return sum

If	f(n)	measures	lines	executed	
f(n)	=	2n +	2

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Step 3: Identify Comparison Metric
• It is typically not possible to identify exactly

the size parameter (i.e. one that perfectly
characterizes the performance), and so we
settle for a representative metric

• Most common is worst case
– Sometimes best case, average case

February 1, 2017

Problem-Solving via Search

26

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Step 4: Approximation
• Typically it is hard to exactly compute f(n),

and so we settle for an approximation

• For worst-case, Big-O notation, O(), yields
this formal asymptotic analysis…

February 1, 2017

Problem-Solving via Search

27

f(n) = O(g(n)) as n ! 1

8n > k |f(n)| c|g(n)|
⌘ 9 c 2 N, k 2 N s.t.

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Big-O Definition Visually

February 1, 2017

Problem-Solving via Search

28

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example
• Since f(n) = 2n + 2,

we can show that this
function is O(n)
– c=3, k=2

February 1, 2017

Problem-Solving via Search

29

def summation(l):
sum = 0
for n in l:

sum += n
return sum

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2n+2 3n

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Exercise
Prove: 5n2 + 3n + 9 = O(n2)

February 1, 2017

Problem-Solving via Search

30

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Solution
Find c and k such that…

1. Solve:

2. Let n=k, solve:
– If k=3, c=7

3. So…

– And thus…

February 1, 2017

Problem-Solving via Search

31

cn2 = 5n2 + 3n+ 9

cn2 > 5n2 + 3n+ 98n > k

c = 5 +
3

k
+

9

k2

7n2 > 5n2 + 3n+ 9 8n > 3

5n2 + 3n+ 9 = O(n2)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Order of Complexity
• O(A) + O(B) =

max(O(A), O(B))
– Slower parts of an

algorithm dominate
faster parts

• O(A) * O(B) =
O(A*B)
– Nesting

February 1, 2017

Problem-Solving via Search

32

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Exercise

Prove:

February 1, 2017

Problem-Solving via Search

33

x

2 + 1

x+ 1
= O(x)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Solution

February 1, 2017

Problem-Solving via Search

34

O(
x

2 + 1

x+ 1
) =

O(x2 + 1)

O(x+ 1)

=
O(x2)

O(x)

= O(
x

2

x

)

= O(x)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Big-O Numerically
Big-O Term Cost	for	n=10 Cost	for	n=100
O(1) Constant 1 1

O(log	n) Logarithmic 3 7

O(n) Linear 10 100

O(n	log	n) Log-Linear,	Linearithmic 33 664

O(n2) Quadratic 100 10,000

O(2n) Exponential 1,024 1.27E30

O(n!) Factorial 3,628,800 9.33E157

February 1, 2017

Problem-Solving via Search

35

It’s important to know this ranking of growth!

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Asymptotic Visual

February 1, 2017

Problem-Solving via Search

36

O(1)
O(logn)

O(n)

O(nlogn)

O(n2)

O(2n)O(n!)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Asymptotic Visual (zoom)

February 1, 2017

Problem-Solving via Search

37

O(1)

O(logn)

O(n)
O(nlogn)

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(1)
Stays constant regardless of problem size

– Check even/odd
– Hash computation
– Array indexing

February 1, 2017

Problem-Solving via Search

38

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(logn)
Inverse of exponential: as you
double the problem size, resource
consumption increases by a
constant

– Binary search
– Balanced tree search

February 1, 2017

Problem-Solving via Search

39

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(n log n)
Performing an O(log n) operation for each
item in your input

– Typical of efficient
sorting

February 1, 2017

Problem-Solving via Search

40

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(n2)
For each item, perform an operation with
each other item

– Duplication detection
– Pairwise comparison
– Bubble sort

February 1, 2017

Problem-Solving via Search

41

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(2n)
For every added element, resource
consumption doubles

– Hardware verification
– Cryptography

February 1, 2017

Problem-Solving via Search

42

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Complexity Analysis
• Thus far we have analyzed algorithms, but complexity analysis focuses on

problems, and classes of problems

• Problems that can be solved in polynomial time, O(nk), form class P
– Generally considered “easy”

(but could have large c)

• Problems in which you can verify a solution in polynomial time form NP
– The “hardest” in NP are NP-complete

• Open question:
– Most computer scientists assume not
– If correct, there can be no algorithm that solves all such problems in polynomial time
– AI is interested in developing algorithms that perform efficiently on typical problems

drawn from a pre-determined distribution

February 1, 2017

Problem-Solving via Search

43

P
?
= NP

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Complex[ity] Humor (TSP)

February 1, 2017

Problem-Solving via Search

44

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Complex[ity] Humor (AI)

February 1, 2017

Problem-Solving via Search

45

Wentworth Institute of Technology COMP3770 – Artificial Intelligence | Spring 2017 | Derbinsky

Summary
• We can represent deterministic, fully observable, discrete,

known tasks as search problems
– Initial state, transition function, goal test, path cost

• State space: all states reachable from initial
– Solution: action sequence, initial->goal

• Optimal: least path cost

• We abstract search state representation depending on the
search problem for computational tractability

• Once formulated, we solve a search problem by incrementally
forming a search tree until a goal state is found
– We evaluate algorithms with respect to solution

completeness/optimality and time/space complexity
– More next lecture!

February 1, 2017

Problem-Solving via Search

46

