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Problem-Solving via Search
Lecture 3

What is a search problem?

How do search algorithms work and how 
do we evaluate their performance?
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Agenda
• An example problem
• Problem formulation
• Infrastructure for search algorithms

– Complexity analysis
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A Motivating Problem
• Start: Arad, Romania
• Goal: Bucharest, Romania

– Roads leading to Sibiu, Timisoara, Zerind

What is a rational 
agent to do?
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Add Geographical Knowledge
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Add Abstraction
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Describe the Task
• Observability
• Certainty
• Representation
• A priori

• Full
• Deterministic
• Discrete
• Known

February 1, 2017

Problem-Solving via Search

6

Under these conditions we can search for a 
problem solution, a fixed sequence of actions
• Given a perfect model, can be done open-loop

(i.e. ignore percepts)
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Search Problem Formalism
Defined via the following components:
• The initial state the agent starts in
• A successor/transition function

S(x) = {action -> state, cost}
• A goal test, which returns true if a given state is a goal state

G(x) = true/false
• A path cost that assigns a numeric cost to each path

– Typically assumed to be sum of action costs

A solution is a sequence of actions leading from initial state to a 
goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly define 
the state space, the set of all reachable states
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Example: Romanian Travel
• Initial state

– Arad
• Successor

– Adjacency, 
cost=distance

• Goal test
– City == Bucharest

• State space
– Cities

February 1, 2017

Problem-Solving via Search

8



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

Example: Pacman
• Initial state

• Successor function

• State space

• Goal test: no more food (e.g.        )
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State Abstraction
• Often world states are absurdly complex

• To solve a particular problem, we abstract 
the search state to only represent details 
necessary to solve the problem
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Example Abstractions

• States: (x,y)
• Actions: NSEW
• Successor: (x’,y’)
• Goal test: (x,y)=END

• States: {(x,y), T/F grid}
• Actions: NSEW
• Successor: (x’,y’), 

possibly T/F change
• Goal test: grid = all F’s
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Abstraction is Necessary
World state
• Agent positions: 120
• Food count: 30
• Ghost positions: 12
• Agent facing: NSEW

How many…
• World states?

– 120x(230)x(122)x4
• States for path planning?

– 120
• States for eat-all-dots?

– 120x(230)
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Exercise
Describe the vacuum-cleaner world search 
problem:

– World state representation
– Search state representation
– Transition model

• State space
– Goal test
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State Space Graph
• State space graph: A 

mathematical representation of 
a search problem
– Nodes are (abstracted) world 

configurations
– Arcs represent successors 

(action results)
– The goal test is a set of goal 

node(s)

• In a search graph, each state 
occurs only once!

• We can rarely build this full 
graph in memory (it’s too 
big), but it’s a useful idea
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Search Tree
• A “what if” tree of plans and 

their outcomes

• The start state is the root node

• Children correspond to 
successors

• Nodes show states, but 
correspond to PLANS that 
achieve those states

• For most problems, we can 
never actually build the 
whole tree
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State Space Graph vs. Search Tree

• Each NODE in in the search tree is an entire PATH in 
the state space graph.

• We construct both on demand – and we construct as 
little as possible.
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Exercise
Consider the following 
4-state state space 
graph…

How big is its search 
tree (from S)?
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Searching for Solutions
Basic idea: incrementally build a 
search tree until a goal state is found

• Root = initial state

• Expand via transition function to 
create new nodes

• Nodes that haven’t been 
expanded are leaf nodes and 
form the frontier (open list)

• Different search strategies (next 
lecture) choose next node to 
expand (as few as possible!)

• Use a closed list to prevent 
expanding the same state more 
than once
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General Algorithm
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Queue (FIFO)
Stack (LIFO)
Priority Queue
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Evaluating a Search Strategy

• Completeness: does it 
always find a solution if 
one exists?

• Optimality: does it 
always find a least-cost 
solution?

• Time Complexity: 
number of nodes 
generated/expanded 

• Space Complexity: 
maximum number of 
nodes in memory 
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Computational Complexity (A.1)
• We are going to be comparing several algorithms

– How do we tell if one is faster/leaner than another?

• Benchmarking involves running the algorithm on 
a computer and measuring performance (e.g. time 
in sec, memory in bytes)
– Unsatisfactory: specific to machine, implementation, 

compiler, inputs, …

• Complexity Analysis is a mathematical approach 
that abstracts away from these details
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Asymptotic Analysis
Basic idea: get a sense of “rate of growth” of an 
algorithm, which tells us how “bad” it will get as 
problem size grows

Example
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sum = 0
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return sum
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Step 1: Identify Size Parameter
• We need to abstract 

over the input and just 
identify what parameter 
characterizes the size 
of the input

• For the example what 
matters is the length of 
the input list
– We’ll refer to this as n
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Step 2: Identify Performance Measure
• Again, abstract over the 

implementation and find 
a measure that reflects 
running time (or 
memory usage), not 
tied to a particular 
computer

• In this case it could be 
lines executed, or 
operations (additions, 
assignments) 
performed
– Call this f(n)
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def summation(l):
sum = 0
for n in l:

sum += n
return sum

If	f(n)	measures	lines	executed	
f(n)	=	2n +	2
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Step 3: Identify Comparison Metric
• It is typically not possible to identify exactly

the size parameter (i.e. one that perfectly 
characterizes the performance), and so we 
settle for a representative metric

• Most common is worst case
– Sometimes best case, average case
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Step 4: Approximation
• Typically it is hard to exactly compute f(n), 

and so we settle for an approximation

• For worst-case, Big-O notation, O(), yields 
this formal asymptotic analysis…

February 1, 2017

Problem-Solving via Search

27

f(n) = O(g(n)) as n ! 1

8n > k |f(n)|  c|g(n)|
⌘ 9 c 2 N, k 2 N s.t.
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Big-O Definition Visually
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Example
• Since f(n) = 2n + 2, 

we can show that this 
function is O(n)
– c=3, k=2
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Exercise
Prove: 5n2 + 3n + 9 = O(n2)
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Solution
Find c and k such that…

1. Solve: 

2. Let n=k, solve:
– If k=3, c=7

3. So…

– And thus…
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cn2 = 5n2 + 3n+ 9

cn2 > 5n2 + 3n+ 98n > k

c = 5 +
3

k
+

9

k2

7n2 > 5n2 + 3n+ 9 8n > 3

5n2 + 3n+ 9 = O(n2)
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Order of Complexity
• O(A) + O(B) = 

max(O(A), O(B))
– Slower parts of an 

algorithm dominate 
faster parts

• O(A) * O(B) = 
O(A*B)
– Nesting

February 1, 2017

Problem-Solving via Search

32



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2017    | Derbinsky

Exercise

Prove: 
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Solution
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Big-O Numerically
Big-O Term Cost	for	n=10 Cost	for	n=100
O(1) Constant 1 1

O(log	n) Logarithmic 3 7

O(n) Linear 10 100

O(n	log	n) Log-Linear,	Linearithmic 33 664

O(n2) Quadratic 100 10,000

O(2n) Exponential 1,024 1.27E30

O(n!) Factorial 3,628,800 9.33E157
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It’s important to know this ranking of growth!
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Asymptotic Visual
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Asymptotic Visual (zoom)
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Example: O(1)
Stays constant regardless of problem size

– Check even/odd
– Hash computation
– Array indexing
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Example: O(logn)
Inverse of exponential: as you 
double the problem size, resource 
consumption increases by a 
constant

– Binary search
– Balanced tree search
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Example: O(n log n)
Performing an O(log n) operation for each 
item in your input

– Typical of efficient 
sorting
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Example: O(n2)
For each item, perform an operation with 
each other item

– Duplication detection
– Pairwise comparison
– Bubble sort
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Example: O(2n)
For every added element, resource 
consumption doubles

– Hardware verification
– Cryptography
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Complexity Analysis
• Thus far we have analyzed algorithms, but complexity analysis focuses on                                                         

problems, and classes of problems

• Problems that can be solved in polynomial time, O(nk), form class P
– Generally considered “easy”                                                                                            

(but could have large c)

• Problems in which you can verify a solution in polynomial time form NP
– The “hardest” in NP are NP-complete

• Open question: 
– Most computer scientists assume not
– If correct, there can be no algorithm that solves all such problems in polynomial time
– AI is interested in developing algorithms that perform efficiently on typical problems 

drawn from a pre-determined distribution
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Complex[ity] Humor (TSP)
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Complex[ity] Humor (AI)
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Summary
• We can represent deterministic, fully observable, discrete, 

known tasks as search problems
– Initial state, transition function, goal test, path cost

• State space: all states reachable from initial
– Solution: action sequence, initial->goal

• Optimal: least path cost

• We abstract search state representation depending on the 
search problem for computational tractability

• Once formulated, we solve a search problem by incrementally 
forming a search tree until a goal state is found
– We evaluate algorithms with respect to solution 

completeness/optimality and time/space complexity
– More next lecture!
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