Problem-Solving via Search Lecture 3

What is a search problem?

How do search algorithms work and how do we evaluate their performance?

Problem-Solving via Search

February 1, 2017

Agenda

- An example problem
- Problem formulation
- Infrastructure for search algorithms
 - Complexity analysis

A Motivating Problem

- Start: Arad, Romania
- Goal: Bucharest, Romania

 Roads leading to Sibiu, Timisoara, Zerind

Add Geographical Knowledge

Problem-Solving via Search

February 1, 2017

Add Abstraction

Describe the Task

- Observability
- Certainty
- Representation
- A priori

- Full
- Deterministic
- Discrete
- Known

Under these conditions we can **search** for a problem **solution**, a fixed sequence of actions

• Given a perfect model, can be done **open-loop** (i.e. ignore percepts)

Search Problem Formalism

Defined via the following components:

- The **initial state** the agent starts in
- A successor/transition function

 $S(x) = \{action \rightarrow state, cost\}$

- A goal test, which returns true if a given state is a goal state G(x) = true/false
- A path cost that assigns a numeric cost to each path
 - Typically assumed to be sum of action costs

A **solution** is a sequence of actions leading from initial state to a goal state. (**Optimal** = lowest path cost.)

Together the initial state and successor function implicitly define the **state space**, the set of all reachable states

Example: Romanian Travel

- Initial state
 - Arad
- Successor
 - Adjacency, cost=distance
- Goal test
 - City == Bucharest
- State space
 Cities

Example: Pacman

- Initial state
- Successor function

• State space

"N", 1.0

"E", 1.0

Goal test: no more food (e.g.

State Abstraction

• Often world states are absurdly complex

 To solve a particular problem, we abstract the search state to only represent details necessary to solve the problem

Example Abstractions

Path Planning

- States: (x,y)
- Actions: NSEW
- Successor: (x',y')
- Goal test: (x,y)=END

Eat All the Dots

- States: {(x,y), T/F grid}
- Actions: NSEW
- Successor: (x',y'), possibly T/F change
- Goal test: grid = all F's

Abstraction is Necessary

World state

- Agent positions: 120
- Food count: 30
- Ghost positions: 12
- Agent facing: NSEW

How many...

- World states?
 - $120x(2^{30})x(12^{2})x4$
- States for path planning?
 120
- States for eat-all-dots?
 - $-120x(2^{30})$

Exercise

Describe the **vacuum-cleaner** world search problem:

- World state representation
- Search state representation
- Transition model
 - State space
- Goal test

Solution State Space Graph

State Space Graph

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal node(s)
- In a search graph, each state (occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Search Tree

- A "what if" tree of plans and their outcomes
- The start state is the root node
- Children correspond to successors
- Nodes show states, but correspond to PLANS that achieve those states
- For most problems, we can never actually build the whole tree

State Space Graph vs. Search Tree

- Each NODE in in the search tree is an entire PATH in the state space graph.
- We construct both on demand and we construct as little as possible.

Exercise

Consider the following 4-state state space graph... How big is its search tree (from S)?

Searching for Solutions

Basic idea: incrementally build a search tree until a goal state is found

- Root = initial state
- Expand via transition function to create new nodes
- Nodes that haven't been expanded are leaf nodes and form the frontier (open list)
- Different **search strategies** (next lecture) choose next node to expand (as few as possible!)
- Use a closed list to prevent expanding the same state more than once

February 1, 2017

Problem-Solving via Search

General Algorithm

- node REMOVE-FRONT(fridge)
- if GOAL-TEST(problem, STATE[node]) then return node
- if STATE[node] is not in closed then add STATE[node] to closed
 - $fringe \leftarrow \text{INSERTALL}(\text{EXPAND}(node, problem), fringe)$

end

Problem-Solving via Search

February 1, 2017

Evaluating a Search Strategy

Solution

- Completeness: does it always find a solution if one exists?
- Optimality: does it always find a least-cost solution?

Efficiency

- Time Complexity: number of nodes generated/expanded
- Space Complexity: maximum number of nodes in memory

Computational Complexity (A.1)

- We are going to be comparing several algorithms – How do we tell if one is faster/leaner than another?
- **Benchmarking** involves running the algorithm on a computer and measuring performance (e.g. time in sec, memory in bytes)
 - Unsatisfactory: specific to machine, implementation, compiler, inputs, …
- **Complexity Analysis** is a mathematical approach that abstracts away from these details

Asymptotic Analysis

Basic idea: get a sense of "rate of growth" of an algorithm, which tells us how "bad" it will get as problem size grows

Example

```
def summation(l):
    sum = 0
    for n in l:
        sum += n
    return sum
```


Step 1: Identify Size Parameter

- We need to abstract over the input and just identify what parameter characterizes the size of the input
- For the example what matters is the length of the input list
 - We'll refer to this as *n*

def summation(l):
 sum = 0
 for n in l:
 sum += n
 return sum

Problem-Solving via Search

Derbinsky

Step 2: Identify Performance Measure

 Again, abstract over the implementation and find a measure that reflects running time (or memory usage), not tied to a particular computer

```
def summation(1):
    sum = 0
```

```
for n in 1:
    sum += n
return sum
```

In this case it could be • lines executed, or operations (additions, assignments) performed

Step 3: Identify Comparison Metric

• It is typically not possible to identify *exactly* the size parameter (i.e. one that perfectly characterizes the performance), and so we settle for a representative metric

- Most common is worst case
 - Sometimes best case, average case

February 1, 2017

Step 4: Approximation

- Typically it is hard to *exactly* compute f(n), and so we settle for an approximation
- For worst-case, **Big-O notation**, O(), yields this formal asymptotic analysis...

$$f(n) = \mathcal{O}(g(n)) \text{ as } n \to \infty$$
$$\equiv \exists \ c \in \mathbb{N}, k \in \mathbb{N} \text{ s.t.}$$
$$\forall n > k \ |f(n)| \le c|g(n)|$$

Derbinsky

Big-O Definition Visually

Example

 Since f(n) = 2n + 2, we can show that this function is O(n) - c=3, k=2 def summation(l):
 sum = 0
 for n in l:
 sum += n
 return sum

Exercise

Prove: $5n^2 + 3n + 9 = O(n^2)$

Solution

Find c and k such that...

- $\forall n > k \quad cn^2 > 5n^2 + 3n + 9$ 1. Solve: $cn^2 = 5n^2 + 3n + 9$
- 2. Let n=k, solve: $c = 5 + \frac{3}{k} + \frac{9}{k^2}$ - If k=3, c=7
- 3. So... $7n^2 > 5n^2 + 3n + 9 \quad \forall n > 3$

– And thus...
$$5n^2 + 3n + 9 = \mathcal{O}(n^2)$$

Order of Complexity

- O(A) + O(B) = max(O(A), O(B))
 - Slower parts of an algorithm dominate faster parts
- O(A) * O(B) =
 O(A*B)
 Nesting

Algorithm O(B) Algorithm O(A) does not include complexity of part B of algorithm

Exercise

Solution

Big-O Numerically

Big-O	Term	Cost for n=10
O(1)	Constant	1
O(log n)	Logarithmic	3
O(n)	Linear	10
O(n log n)	Log-Linear, Linearithmic	33
O(n²)	Quadratic	100
O(2 ⁿ)	Exponential	1,024
O(n!)	Factorial	3,628,800

It's important to know this ranking of growth!

COMP3770 – Artificial Intelligence

Asymptotic Visual

February 1, 2017

Asymptotic Visual (zoom)

February 1, 2017

Example: O(1)

Stays constant regardless of problem size

- Check even/odd
- Hash computation
- Array indexing

Problem-Solving via Search

February 1, 2017

38

int getRandomNumber()

}

return 4: // chosen by fair dice roll.

// guaranteed to be random.

Example: O(logn)

Inverse of exponential: as you double the problem size, resource consumption increases by a constant

- Binary search
- Balanced tree search

Problem-Solving via Search

Example: O(n log n)

Performing an O(log n) operation for each item in your input

 Typical of efficient sorting

Problem-Solving via Search

Example: O(n²)

For each item, perform an operation with each other item

- Duplication detection
- Pairwise comparison
- Bubble sort

Example: O(2ⁿ)

For every added element, resource consumption doubles

- Hardware verification
- Cryptography

February 1, 2017

Derbinsky

Complexity Analysis

- Thus far we have analyzed algorithms, but **complexity analysis** focuses on problems, and classes of problems
- Problems that can be solved in polynomial time, O(n^k), form class **P**
 - Generally considered "easy" (but could have large c)
- Problems in which you can verify a solution in polynomial time form **NP**
 - The "hardest" in NP are **NP-complete**
- Open question: $P \stackrel{?}{=} NP$
 - Most computer scientists assume not
 - If correct, there can be no algorithm that solves all such problems in polynomial time
 - Al is interested in developing algorithms that perform efficiently on *typical* problems drawn from a pre-determined distribution

Complex[ity] Humor (TSP)

Complex[ity] Humor (AI)

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Summary

- We can represent deterministic, fully observable, discrete, known tasks as search problems
 - Initial state, transition function, goal test, path cost
 - State space: all states reachable from initial
 - **Solution**: action sequence, initial->goal
 - Optimal: least path cost
- We abstract search state representation depending on the search problem for computational tractability
- Once formulated, we solve a search problem by incrementally forming a search tree until a goal state is found
 - We evaluate algorithms with respect to solution completeness/optimality and time/space complexity
 - More next lecture!

