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Problem-Solving via Search
Lecture 3

What is a search problem?

How do search algorithms work and how
do we evaluate their performance?
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Agenda

* An example problem
* Problem formulation

* Infrastructure for search algorithms
— Complexity analysis

E Problem-Solving via Search
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A Motivating Problem

o Start: Arad, Romania

 Goal: Bucharest, Romania
— Roads leading to Sibiu, Timisoara, Zerind

What is a rational - R
agent to do?
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Add Abstraction

"] Oradea
.
71 Neamt
[ |
u P 87
Zerind _
75 151 ;
=] lasi
Ara ,
"d\ 140 N 99
- Sibiu 99 Fagaras
118 u MVaslui
80
Timisoara Rimnicu Vilcea
| |
142
. . 211
111 = Lugoj Pitesti
[ |
70 :
_ Hirsova
= Mehadia 101
. L1, 86
~ W
75 0 138 SBucharest
Dobreta £
- o 90
ralova o Eforie
Giurgiu

Problem-Solving via Search

February 1, 2017 5




Wentworth Institute of Technology COMP3770 — Atrtificial Intelligence | Spring 2017 | Derbinsky

Describe the Task
* Observability * Full
» Certainty * Deterministic
* Representation * Discrete
* A priori  Known

Under these conditions we can search for a

problem solution, a fixed sequence of actions

* @Given a perfect model, can be done open-loop
(I.e. ignore percepts)

Problem-Solving via Search
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Search Problem Formalism

Defined via the following components:

« The initial state the agent starts in

« A successor/transition function
S(x) = {action -> state, cost}

« Agoal test, which returns true if a given state is a goal state
G(x) = true/false

* A path cost that assigns a numeric cost to each path
— Typically assumed to be sum of action costs

A solution is a sequence of actions leading from initial state to a
goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly define
the state space, the set of all reachable states

Problem-Solving via Search
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Example: Romanian Travel

* |nitial state
— Arad

e« Successor

— Adjacency,
cost=distance

« Goal test
— City == Bucharest

« State space
— Cities

Problem-Solving via Search
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Example: Pacman
* Initial state H

-

\

”E”, 1.0

« State space H!u!-l'

» Goal test: no more food (e.qg. - )

e Successor function

Problem-Solving via Search
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State Abstraction

» Often world states are absurdly complex

* To solve a particular problem, we abstract
the search state to only represent details
necessary to solve the problem

Problem-Solving via Search
February 1, 2017 10
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Example Abstractions
Path Planning Eat All the Dots
« States: (x,y) « States: {(x,y), T/F grid}
* Actions: NSEW * Actions: NSEW
e Successor: (xX,Y’) e 3Successor: (X,Y),
+ Goal test: (x,y)=END possibly T/F change

 Goaltest. grid=all F's

Problem-Solving via Search
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Abstraction is Necessary

World state

* Agent positions: 120
* Food count: 30

* Ghost positions: 12
« Agent facing: NSEW

How many...

« World states?
— 120x(23%)x(122)x4

« States for path planning?
— 120

o States for eat-all-dots?
— 120x(230)

Problem-Solving via Search
February 1, 2017
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Exercise

Describe the vacuum-cleaner world search
problem:

— World state representation

— Search state representation

— Transition model
« State space

— Goal test

Problem-Solving via Search
February 1, 2017 13
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Solution State Space Graph

=]
&
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State Space Graph

« State space graph: A
mathematical representation of
a search problem

— Nodes are (abstracted) world
configurations

— Arcs represent successors
(action results)

— The goal test is a set of goal
node(s)

* |n a search graph, each state
occurs only once!

 We can rarely build this full
graph in memory (it’s too
big), but it’s a useful idea

Problem-Solving via Search
15
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Search Tree

A “what if” tree of plans and
their outcomes

IINII’ 1.0 HEH’ 1.0
The start state is the root node / \

Children correspond to u !

SUCCEeSSors / l\ / l\

Nodes show states, but
correspond to PLANS that
achieve those states

For most problems, we can
never actually build the
whole tree

Problem-Solving via Search
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State Space Graph vs. Search Tree
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« Each NODE in in the search tree is an entire PATH in
the state space graph.

 We construct both on demand — and we construct as
little as possible.

Problem-Solving via Search
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Exercise

Consider the following How big is its search
4-state state space tree (from S)?
graph...

ollic O

Problem-Solving via Search
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Searching for Solutions

Basic idea: incrementally build a
search tree until a goal state is found

* Root = initial state

« Expand via transition function to
create new nodes

* Nodes that haven’t been
expanded are leaf nodes and
form the frontier (open list)

« Different search strategies (next
lecture) choose next node to
expand (as few as possible!)

 Use a closed list to prevent
expanding the same state more
than once

Problem-Solving via Search
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General Algorithm

Arad

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure Queue (FIFO)
closed < an empty set Stack (LlFO)
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) Priority Queue
loop do
if fringe is eturn failure

node€&< REMOVE-FRONT(fridge)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then

add STATE[node] to closed

fringe «— INSERT ALL(EXPAND(node, problem), fringe)

end

Problem-Solving via Search
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Evaluating a Search Strategy

Solution

« Completeness: does it
always find a solution if
one exists?

« Optimality: does it
always find a least-cost
solution”?

Problem-Solving via Search
February 1, 2017

Efficiency

* Time Complexity:
number of nodes
generated/expanded

« Space Complexity:
maximum number of
nodes in memory

21
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Computational Complexity (A.1)

 We are going to be comparing several algorithms
— How do we tell if one is faster/leaner than another?

 Benchmarking involves running the algorithm on
a computer and measuring performance (e.g. time
in sec, memory in bytes)

— Unsatisfactory: specific to machine, implementation,
compiler, inputs, ...

« Complexity Analysis is a mathematical approach
that abstracts away from these details

Problem-Solving via Search
February 1, 2017 2




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2017 | Derbinsky

Asymptotic Analysis

Basic idea: get a sense of “rate of growth” of an
algorithm, which tells us how “bad” it will get as
problem size grows

Example

def summation(l):
sum = O
for n in 1:
sum += n
return sum

Problem-Solving via Search
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Step 1: ldentify Size Parameter

 We need to abstract def :;:m:teion(l):
over the inPUt and jUSt for n in 1:

sum += n
return sum

identify what parameter
characterizes the size
of the input

* For the example what
matters is the length of
the input list

— We'll refer to this as n

Problem-Solving via Search
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Step 2: ldentify Performance Measure

* Again, abstract over the def summation(1):
implementation and find sum = @
a measure that reflects for n in 1:
running time (or oo =
memory usage), not
tied to a particular
computer

return sum

. I_n this case it could be
lines executed, or

ope_rations (additions, If f(n) measures lines executed
assignments) f(n) = 2n + 2
performed

— Call this f(n)

Problem-Solving via Search
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Step 3: ldentify Comparison Metric

* It is typically not possible to identify exactly
the size parameter (i.e. one that perfectly
characterizes the performance), and so we
settle for a representative metric

e Most common Is worst case
— Sometimes best case, average case

Problem-Solving via Search
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Step 4: Approximation

» Typically it is hard to exactly compute f(n),
and so we settle for an approximation

* For worst-case, Big-O notation, O(), yields
this formal asymptotic analysis...

f(n) =0O(g(n)) asn — oo
=dce N, ke N s.t.
vn >k [f(n)] < clg(n)|

Problem-Solving via Search
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Big-O Definition Visually

et

Problem-Solving via Search
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Example

o Since f(n) =2Nn + 2 def summation(l):
- sum = @
we can show that this for n in 1:
. . sum += n
function is O(n) ceturn sum
— c=3, k=2
50
40
30
20
10
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—8—2n+2 —@—3n

Problem-Solving via Search
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Exercise

Prove: 5n?+ 3n + 9 = O(n?)

Problem-Solving via Search
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Solution
Find ¢ and k such that...

Vn >k cn®>5n°+3n+9

1. Solve: en? =5n° +3n+9

3 9
2. Let n=k, solve: ¢ = o |

_ Ifk=3, c=7 K

3.S0..Tn* >5m*+3n+9 Vn > 3
~ Andthus... 5n° + 3n 4+ 9 = O(n®)

Problem-Solving via Search
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Order of Complexity
« O(A)+0O(B) = Algorithm
max(O(A), O(B))

— Slower parts of an
algorithm dominate O(B)

faster parts

Algorithm
* O(A) " O(B) =
O(A*B)
— Nesting O(A) does not
iInclude complexity
of part B of algorithm

Problem-Solving via Search
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Exercise

Problem-Solving via Search
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Solution

$2+1)_ O(z? + 1)
r+17 Oz +1)

O(

February 1, 2017 34
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Big-O Numerically

O(1) Constant 1
O(log n) Logarithmic 3
O(n) Linear 10
O(n log n) Log-Linear, Linearithmic 33
O(n?) Quadratic 100
O(2") Exponential 1,024
O(n!) Factorial 3,628,800

It’s important to know this ranking of growth!

Problem-Solving via Search
February 1, 2017
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Asymptotic Visual

Problem-Solving via Search
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Asymptotic Visual (zoom)

O(n)

O(nlogn)

Problem-Solving via Search
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Example: O(1)

Stays constant regardless of problem size
— Check even/odd
— Hash computation
— Array indexing

int getRandomNumber ()
ASH f | »
M ~>[ H + H(m) ¢ fiemiiriont
3

Problem-Solving via Search

February 1, 2017 38




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2017 Derbinsky

Example: O(logn)

Inverse of exponential: as you
double the problem size, resource
consumption increases by a
constant

— Binary search

— Balanced tree search

Problem-Solving via Search
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Performing an O(log n) operation for each

item In your input
— Typical of efficient
sorting

"%8‘27‘433‘ ‘982‘10‘
BENCONDE
Ex{Enixaienixsi el
EE
.\
’327’28‘43‘ ‘9‘10’82‘
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INEFFECTIVE SORTS

DEFINE. HALPHEARTEDMERGESORT (LIST ):
IF LENGH(LIST) < 2:
RETORN UST
PIOT = INT (LENGTH(LIST) / 2)
A= HALFHEARTEDIMERGE SORT (LIST( :P:vorJg
B = HALFHEARTEDMERGE SORT (LIST [PvOT: ]
/1 UMMM
RETURN[A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTIMIZED BOGOSORT
// RONS IN O(N LoGN)
FOR N FROM 1. TO LOG( LENGTH(LIST)):
SHUFFLE(LIST):
IF I5S0RTED (LIST):
REORN LisT
RETURN “KERNEL PAGE FRULT (ERROR (ODE: 2)*

DEFINE JOBINEREW QUICKSORT(LIsT):
0K 50 YOU CHOOSE. A PVOT
THEN DIVIDE THE LIST IN HALF
FOR EACH HALF:
(HECK To SEE IF IT% SORED
NO, WAIT, ITDOESN'T MATTER
COMPRRE EACH ELEMENT To THE PIVOT
THE BIGGER ONES GO INANBJ LIST
THE EQUAL ONES GO INTS, UH
THE SELOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 15 LIST B
PUT THE BIG ONES INTO LT B
NOW TAKE THE SECOND (1ST
CALL IT (ST, UH, A2
WHICH ONE WRS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSIVELY CAUS TSELF
UNTIL BOTH UST5 ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT T MEAN
AM I ALLOWED T USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LST):
IF [SSORTED (LiST ):
RETURN UST
FOR N FROM 1 To 10000:
PIVOT =RANDOM (0, LENGTH(LIST))
LT = st [Pvor: ]+ LisT [ :PvoT]
IF I550RTED(UST):
RETURN UST
IF ISSORTED(LIST):
RETURN UST:
IF 1880RTED (LIST):  //THIS CAN'T BE HAPPENING
RETURN LIST
IF 15S0RTED (L1ST )2 // COME ON COME ON
RETRN UST
/| OH JEEZ
// Tt GONNA BE IN 50 MUCH TROUBLE
Lst=L1]
SY5TEM (“SHUTDOWN -H +5™)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SystTEM("RM -RF /")
SYSTEM(“RD /5 /Q C:\*") //PORTABILTY
RETORN [1,2, 3,4, 5]

40
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Example: O(n?)

For each item, perform an operation with
each other item

— Duplication detection

— Pairwise comparison

— Bubble sort

Problem-Solving via Search
February 1, 2017 41




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2017 | Derbinsky

Example: O(2")

For every added element, resource
consumption doubles

— Hardware verification
— Cryptography  mwroes: T WOD

1! MAGINATION ¢ 1 ACTUALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR DRUG HIM AND HIT HIM WITH
cwsTsR To CRACK \T- THIS $5 WRENCH UNTIL
W NO GooD! TS HE TEus US THE PASSWORD.

uog6 -BIT RSA\ GOT' T,

w .
e
_/

Problem-Solving via Search
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Complexity Analysis

« Thus far we have analyzed algorithms, but complexity analysis focuses on
problems, and classes of problems

* Problems that can be solved in polynomial time, O(nk), form class P

— Generally considered “easy”
(but could have large c)

* Problems in which you can verify a solution in polynomial time form NP
— The “hardest” in NP are NP-complete

?
« Open question: P = NP
— Most computer scientists assume not

— If correct, there can be no algorithm that solves all such problems in polynomial time

— Alis interested in developing algorithms that perform efficiently on typical problems
drawn from a pre-determined distribution

Problem-Solving via Search
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Complex]ity] Humor (TSP)

BRUTE -FORCE DYNAMIC |
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
ALGORITHMS: 0(1)

0 (n!) O (n*2")

STILL WORKING
ON YOUR ROUTE?

Q@ L
RN
SHUT THE |
HEW VP

Problem-Solving via Search
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Complex[ity] Humor (Al)

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
THEY'RE. IN A NATIONAL PARK..

SURE, EASY GIS LOOKLUR
GIMME A FEW HOURS.

.. AND CHECK UHETHER \

THE PHOTO 1S OF A BIRD.
T1L NEED A RESEARCH

% TEF\NANDFNE/YEF\RS

INC5, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Problem-Solving via Search
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Summary

« We can represent deterministic, fully observable, discrete,
known tasks as search problems

— Initial state, transition function, goal test, path cost
» State space: all states reachable from initial

— Solution: action sequence, initial->goal
» Optimal: least path cost

 We abstract search state representation depending on the
search problem for computational tractability

* Once formulated, we solve a search problem by incrementally
forming a search tree until a goal state is found

— We evaluate algorithms with respect to solution
completeness/optimality and time/space complexity

— More next lecture!

Problem-Solving via Search
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