
Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Recursion

Lecture 13

March 26, 2017

Recursion

1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

What is Recursion?
• A method of programming in which a

method refers to itself in order to solve a
problem

• Never necessary
– In some situations, results in simpler and/or

easier-to-write code
– Can often be more expensive in terms of

memory + time

March 26, 2017

Recursion

2

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a factorial method that takes as input
an integer (assumed to be >= 0) and returns
as an integer the result

March 26, 2017

Recursion

3

n! =
nY

k=1

k = 1 ⇤ 2 ⇤ 3 ⇤ . . . ⇤ n

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static int factorial(int n) {

int result = 1;
for (int i=2; i<=n; i++) {

result *= i;
}
return result;

}

March 26, 2017

Recursion

4

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Consider a Recursive Definition

March 26, 2017

Recursion

5

0! = 1

n! = n(n� 1)! when n � 1

Base	Case

Recursive	Step

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Conversion to Code
public static int factorial_r(int n) {

if (n == 0) {
return 1;

} else {
return (n * factorial_r(n - 1));

}
}

March 26, 2017

Recursion

6

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (1)

March 26, 2017

Recursion

7

main
int x = factorial_r(4);

factorial_r(4)
return 4 * factorial_r(3);

factorial_r(3)
return 3 * factorial_r(2);

factorial_r(2)
return 2 * factorial_r(1);

factorial_r(1)
return 1 * factorial_r(0);

factorial_r(0)
return 1;

Call	Stack

Stack	
Frame

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (2)

March 26, 2017

Recursion

8

main
int x = factorial_r(4);

factorial_r(4)
return 4 * factorial_r(3);

factorial_r(3)
return 3 * factorial_r(2);

factorial_r(2)
return 2 * factorial_r(1);

factorial_r(1)
return 1 * 1;

Call	Stack

Stack	
Frame

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (3)

March 26, 2017

Recursion

9

main
int x = factorial_r(4);

factorial_r(4)
return 4 * factorial_r(3);

factorial_r(3)
return 3 * factorial_r(2);

factorial_r(2)
return 2 * 1;

Stack	
Frame

Call	Stack

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (4)

March 26, 2017

Recursion

10

main
int x = factorial_r(4);

factorial_r(4)
return 4 * factorial_r(3);

factorial_r(3)
return 3 * 2;

Stack	
Frame

Call	Stack

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (5)

March 26, 2017

Recursion

11

main
int x = factorial_r(4);

factorial_r(4)
return 4 * 6;

Stack	
Frame

Call	Stack

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

How the Code Executes (6)

March 26, 2017

Recursion

12

main
int x = 24;

Stack	
Frame

Call	Stack

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solving via Recursion
• In general, to solve a problem using

recursion, break it into sub-problems

• If a sub-problem is similar to the original
problem, just smaller in size, you can
apply the same approach to solve the sub-
problem recursively
– Always make sure to have a base case, which

is when the sub-problem has become “too
small”

March 26, 2017

Recursion

13

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a recursive method to print “Mind
Blown!” n times, without using a loop.

March 26, 2017

Recursion

14

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static void mindBlown(int n) {

if (n >= 1) {
System.out.printf("Mind Blown!%n");
mindBlown(n-1);

} // The base case is n == 0
}

March 26, 2017

Recursion

15

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a recursive method power that takes in
two integer arguments (base, exponent)
and returns baseexponent using no libraries.
Assume exponent will be non-negative

March 26, 2017

Recursion

16

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static int power(int base, int exponent) {

// base case
if (exponent == 0)

return 1;

// recursive step
return base * power(base, exponent-1);

}

March 26, 2017

Recursion

17

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a recursive method verticalDigits
that outputs each digit of an integer to the
screen on its own line. For example:

verticalDigits(1234);
1
2
3
4

March 26, 2017

Recursion

18

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static void verticalDigits(int n) {

if (n < 10) {
System.out.printf("%d%n", n);

} else {
verticalDigits(n / 10);
System.out.printf("%d%n", n % 10);

}
}

March 26, 2017

Recursion

19

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a recursive method verticalDigits2
that outputs each digit of an integer to the
screen on its own line. For example:

verticalDigits2(1234);
4
3
2
1

March 26, 2017

Recursion

20

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static void verticalDigits2(int n) {

if (n < 10) {
System.out.printf("%d%n", n);

} else {
System.out.printf("%d%n", n % 10);
verticalDigits2(n / 10);

}
}

March 26, 2017

Recursion

21

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
In mathematics, the Fibonacci sequence is a
sequence of integers:

0, 1, 1, 2, 3, 5, 8, 13, 21, …

Or, more formally:

Write the recursive fib method, which takes one
integer argument.

March 26, 2017

Recursion

22

Fn = Fn�1 + Fn�2

F0 = 0, F1 = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static int fib(int n) {

if (n == 0)
return 0;

else if (n == 1)
return 1;

else
return fib(n-1) + fib(n-2);

}

March 26, 2017

Recursion

23

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a recursive method to compute all
permutations of a supplied string and return
them as a list

getPerms("abc")
[abc, acb, bac, bca, cab, cba]

March 26, 2017

Recursion

24

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
public static String insertCharAt(String word,

char c,
int i) {

final String start = word.substring(0, i);
final String end = word.substring(i);
return start + c + end;

}

getPerms("") -> [""]
getPerms("c") -> ["c"]
getPerms("bc") -> ["bc","cb"]
getPerms("abc") -> ["abc","bac","bca",

"acb”,"cab","cba"]

public static List<String> getPerms(String str) {
if (str == null) {

return null;
}

final ArrayList<String> perms =
new ArrayList<>();

if (str.length() == 0) {
perms.add("");
return perms;

}

final char first = str.charAt(0);
final String remainder = str.substring(1);
final List<String> words =

getPerms(remainder);
for (String word : words) {

for (int j=0; j<=word.length(); j++) {
perms.add(
insertCharAt(word, first, j));

}
}
return perms;

}

March 26, 2017

Recursion

25

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Recursion vs. Iteration
• Recursion is an alternative form of program

control – essentially repetition without a loop

• Recursion bears substantial overhead
– Each time the program calls a method, the

system must assign space for all of the method’s
local variables and parameters

– This can consume considerable memory and
requires extra time to manage the additional
space

– Too much recursion = exceeding the call-stack
memory limit = one way to cause a stack
overflow

March 26, 2017

Recursion

26

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Take Home Points

March 26, 2017

Recursion

27

• Recursive methods are methods that call
themselves

• Recursion is an alternative to iteration (i.e.
looping)
– Sometimes simpler to write
– Comes at computational expense, is more

limited in depth than iterative approaches

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

XKCD Says…

March 26, 2017

Recursion

28

