
Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

OOP: Thinking in Classes

Lecture 3

February 7, 2017

OOP: Thinking in Classes

1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Abstraction and Encapsulation
• Class abstraction means to separate class
implementation from the use of the class

• The creator of the class provides a description of
the class via public methods/variables
– This lets the user know what the class can do

• The user of the class does not need to know how
the class is implemented
– Thus the details of class implementation are

encapsulated and hidden from the user

February 7, 2017

OOP: Thinking in Classes

2

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
• The public methods

form a contract via
public (+)
methods/constants

• Client interacts
through these means
and need not know
the details of
implementation

February 7, 2017

OOP: Thinking in Classes

3

Circle

-radius: double

+Circle()
+Circle(r: double)
+getRadius(): double
+setRadius(r: double)
+getArea(): double

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Wrapper Classes
• Java has built-in

“wrapper” classes for
all primitive types

Primitive Wrapper
byte Byte

short Short

int Integer

long Long

float Float

double Double

boolean Boolean

char Character

February 7, 2017

OOP: Thinking in Classes

4

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

General Wrapper Details
• These classes do NOT have no-arg

constructors

• The instances of all wrapper classes are
immutable
– Their internal values cannot be changed once

the objects are created

February 7, 2017

OOP: Thinking in Classes

5

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The Integer and Double Classes

February 7, 2017

OOP: Thinking in Classes

6

java.lang.Integer

-value: int
+MAX_VALUE: int
+MIN_VALUE: int

+Integer(value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double
+compareTo(o: Integer): int
+toString(): String
+valueOf(s: String): Integer
+valueOf(s: String, radix: int): Integer
+parseInt(s: String): int
+parseInt(s: String, radix: int): int

...

java.lang.Double

-value: double
+MAX_VALUE: double
+MIN_VALUE: double

+Double(value: double)
+Double(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double
+compareTo(o: Double): int
+toString(): String
+valueOf(s: String): Double
+valueOf(s: String, radix: int): Double
+parseDouble(s: String): double
+parseDouble(s: String, radix: int): double

...

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Creating Wrappers
• You can construct a wrapper object either

from a primitive data type value or from a
string representing the numeric value

• The valueOf static methods create new
objects from a string representation

• The parseing static methods extract primitive
values from a string representation

• Radix: numeric base

February 7, 2017

OOP: Thinking in Classes

7

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
What is the output of the following code…

System.out.printf("%d%n",
Integer.parseInt("14"));

System.out.printf("%d%n",
Integer.parseInt("14", 10));

System.out.printf("%d%n",
Integer.parseInt("14", 16));

February 7, 2017

OOP: Thinking in Classes

8

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer

14
14
20

February 7, 2017

OOP: Thinking in Classes

9

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Conversion Methods
• The doubleValue, intValue, … allow

you to convert objects to primitives

System.out.printf("%d%n",
new Double("14.1").intValue());

February 7, 2017

OOP: Thinking in Classes

10

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Class Constants
• MAX_VALUE

– Maximum value of the corresponding primitive data
type

int iMax = Integer.MAX_VALUE; // 2147483647
double dMax = Double.MAX_VALUE; // 1.80e+308

• MIN_VALUE
– Float/Double: minimum positive value

int iMin = Integer.MIN_VALUE; // -2147483648
double dMin = Double.MIN_VALUE; // 4.90e-324

February 7, 2017

OOP: Thinking in Classes

11

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Comparison
The compareTo(o) method returns…

0: this and o are equal
< 0: this is smaller/o is bigger
> 0: this is bigger/o is smaller

final Integer i = new Integer(5);
System.out.printf("%d%n",

i.compareTo(5)); // 0
System.out.printf("%d%n",

i.compareTo(10)); // -1
System.out.printf("%d%n",

i.compareTo(2)); // 1

February 7, 2017

OOP: Thinking in Classes

12

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a method biggerOf that takes two int’s
and returns a String…

System.out.printf("%s%n",
biggerOf(1, 100)); // b

System.out.printf("%s%n",
biggerOf (100, 1)); // a

System.out.printf("%s%n",
biggerOf(100, 100)); // equal

February 7, 2017

OOP: Thinking in Classes

13

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer
public static String biggerOf(int a, int b) {

final int c =
Integer.valueOf(a).compareTo(Integer.valueOf(b));

return (c==0)?"equal":((c>0)?"a":"b");
}

February 7, 2017

OOP: Thinking in Classes

14

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The String Class
• Construction

String s1 = "Things";
String s2 = new String("Stuffs");

• Length, Character
s1.length(), s1.charAt(i)

• Concatenation
String s3 = s1.concat(s2) // s1 + s2

• Substring
s1.substring(2) // "ings"
s2.substring(1, 5) // "tuff"

• Comparisons
s1.equals(s2), s2.compareTo(s1)

February 7, 2017

OOP: Thinking in Classes

15

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Strings are Immutable
• A String object is immutable – once

constructed, its contents cannot be
changed

• What does the following code do?

String s = "hello";
s = "world";

February 7, 2017

OOP: Thinking in Classes

16

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (1)
String s = "hello";
s = "world";

February 7, 2017

OOP: Thinking in Classes

17

s
Memory

: String

"hello"

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (2)
String s = "hello";
s = "world";

February 7, 2017

OOP: Thinking in Classes

18

s
Memory

: String

"hello"

: String

"world"

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Interned Strings
• Strings are immutable and are frequently

used

• So to improve efficiency and save
memory, the JVM uses a unique instance
for string literals with the same character
sequence

• Such an instance is called interned

February 7, 2017

OOP: Thinking in Classes

19

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

February 7, 2017

OOP: Thinking in Classes

20

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (1)
String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

February 7, 2017

OOP: Thinking in Classes

21

s1
Memory

: String

"things"

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (2)
String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

February 7, 2017

OOP: Thinking in Classes

22

s1
Memory

: String

"things"

s2
: String

"things"

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (3)
String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

February 7, 2017

OOP: Thinking in Classes

23

s1
Memory

: String

"things"

s2
: String

"things"
s3

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

String Interning
• A new object is created if you use the new

operator.

• When you use the string initializer (= ""),
no new object is created if the interned
object already exists

February 7, 2017

OOP: Thinking in Classes

24

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup
What is output to the terminal when the following code is
executed?

String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

System.out.printf("%b %b%n", s1==s2, s1.equals(s2));
System.out.printf("%b %b%n", s1==s3, s1.equals(s3));
System.out.printf("%b %b%n", s2==s3, s2.equals(s3));

February 7, 2017

OOP: Thinking in Classes

25

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer
false true
true true
false true

February 7, 2017

OOP: Thinking in Classes

26

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

String Replacement
• replace(oldC: char, newC: char): String

– Returns a new string that replaces all matching
characters in this string with the new character

• replaceFirst(oldS: String, newS: String): String
– Return a new string that replaces the first matching

substring in this string with the new substring

• replaceAll(oldS: String, newS: String): String
– Returns a new string that replaces all matching

substrings in this string with a new substring

February 7, 2017

OOP: Thinking in Classes

27

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
What is output to the terminal when the
following code is executed…

final String w = "Welcome";
System.out.printf("%s%n", w);
w.replace('e', 'E');
System.out.printf("%s%n", w);

February 7, 2017

OOP: Thinking in Classes

28

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer: Immutability!
Welcome
Welcome

February 7, 2017

OOP: Thinking in Classes

29

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
What is output to the terminal when the
following code is executed…

System.out.printf("%s%n",
"Welcome".replace('e', 'E'));

System.out.printf("%s%n",
"Welcome".replaceFirst("e", "EE"));

System.out.printf("%s%n",
"Welcome".replaceAll("e", "EE"));

System.out.printf("%s%n",
"Welcome".replaceFirst("el", "EE"));

February 7, 2017

OOP: Thinking in Classes

30

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer
WElcomE
WEElcome
WEElcomEE
WEEcome

February 7, 2017

OOP: Thinking in Classes

31

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Splitting a String
split(delimiter: String): String[]

– Returns an array of strings consisting of the
substrings split by the delimiter

for (String s : "Hello World".split(" ")) {
System.out.printf("%s%n", s);

}

February 7, 2017

OOP: Thinking in Classes

32

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Regular Expressions
• A regular expression is a way of

expressing a pattern of characters
– Frequently used to test inputs, as well as

search/replace string contents

• They are quite complex and flexible –
you’ll learn plenty about them in later
classes
– Here’s just a taste…

February 7, 2017

OOP: Thinking in Classes

33

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example RegEx’s
• "abc"

– Only matches "abc"
• ".*abc.*"

– Contains "abc”
– . = any character, *=any number of times

• "(abc)*"
– Either "" or "abc" or "abcabc" or …

• "(abc)+"
– Either "abc" or "abcabc" or …

• "[abc]"
– Either "a" or "b" or "c”

• "[abc]+"
– A string composed of one or more a’s, b’s, and/or c’s

February 7, 2017

OOP: Thinking in Classes

34

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Regular Expression Methods
• matches(regex: String): boolean

– Returns true if the string matches the regular
expression

"Java is fun".matches("Java.*"); // true
"Java is cool".matches("Java.*"); // true

• The split, replaceFirst, and replaceAll
methods can also use regular expressions

February 7, 2017

OOP: Thinking in Classes

35

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Examples
System.out.printf(

"a+b$#c".replaceAll("[$+#]", "NNN"));

for (String s : "a,b;c".split("[,;]")) {
System.out.printf("%s%n", s);

}

February 7, 2017

OOP: Thinking in Classes

36

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Making Strings
• The String class is immutable, and so

creating strings incrementally can be very
inefficient (new instances are being
created and thrown away)

• The StringBuilder class allows you to
add/remove modify contents as you wish

February 7, 2017

OOP: Thinking in Classes

37

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (1)
StringBuilder sb = new StringBuilder();
sb.append("Welcome");
sb.append(' ');
sb.append("to");
sb.append(' ');
sb.append("Java!");

System.out.printf("%s%n", sb);
// Welcome to Java!

February 7, 2017

OOP: Thinking in Classes

38

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (2)
sb.insert(11, "HTML and "); // Welcome to HTML and Java!

sb.delete(8, 11); // Welcome HTML and Java!

sb.deleteCharAt(sb.length()-1); // Welcome HTML and Java

sb.reverse(); // avaJ dna LMTH emocleW

sb.reverse().replace(8, 16, "HTML"); // Welcome HTML Java

sb.setCharAt(0, 'w'); // welcome HTML Java

February 7, 2017

OOP: Thinking in Classes

39

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
Write a method that takes as a parameter an
array of Strings and returns all the words
concatenated into a single string using a
StringBuilder

February 7, 2017

OOP: Thinking in Classes

40

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer
public static void main(String[] args) {

String[] myWords = {"Dog","Cat","Fish","Bird","Horse"};
System.out.printf("%s%n",makeSentence(myWords));

}

public static String makeSentence(String[] words) {
StringBuffer sentence = new StringBuffer();
for(String w: words){

sentence.append(w);
}
return sentence.toString();

}

February 7, 2017

OOP: Thinking in Classes

41

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The ArrayList Class
• So far, when we wanted to store many values

of the same type, we used an array

• However, we have seen that with arrays, we
need to know the size ahead of time, and
can’t adjust later

• The ArrayList class contains an array, and
supports array-like methods, but can grow
and shrink as necessary
– A great example of encapsulating complex

behavior within a class

February 7, 2017

OOP: Thinking in Classes

42

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Creating an ArrayList
ArrayList<Type> a = new ArrayList<Type>();

• Like an array, when you create an
ArrayList, you provide a data type for all
elements, via the <Type>, which must be a
class (note: wrapper classes come in handy!)
– ArrayList is an example of a class that can be

parameterized by a type, known as a generic
class

• You must import ArrayList from java.util

February 7, 2017

OOP: Thinking in Classes

43

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Creating an Empty ArrayList
ArrayList<Integer> a = new ArrayList<Integer>();

ArrayList<Double> b = new ArrayList<Double>();

ArrayList<String> c = new ArrayList<String>();

Note:	you	can	leave	off	the	second	<Type>	if	you	wish...

ArrayList<Integer> a = new ArrayList<>();

February 7, 2017

OOP: Thinking in Classes

44

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

ArrayList Size vs. Capacity
• Once an ArrayList is initialized, it is

useful to think of it as encapsulating a
partially filled array

• Two key properties:
– Size: how many elements are in the list

• Default constructor: 0; via size() and isEmpty()
– Capacity: the size of the internal array

• Default constructor: 10; not accessible

February 7, 2017

OOP: Thinking in Classes

45

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Adding Elements
• Add an element to the end of the list via the

add method

ArrayList<Integer> a = new
ArrayList<>();

System.out.println(a.size()); // 0
a.add(3);
a.add(1);
a.add(4);
System.out.println(a.size()); // 3

February 7, 2017

OOP: Thinking in Classes

46

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Resizing Behavior
• Whenever an element is added such that the new

size would exceed the capacity of the underlying
array, the ArrayList automatically resizes to
accommodate, and copies old data

• Basic idea:

newArray = new Type[newSize];
for (int i=0; i<oldSize; i++)

newArray[i] = listArray[i];
listArray = newArray;

February 7, 2017

OOP: Thinking in Classes

47

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Resizing Efficiently
• Copying arrays can become

computationally expensive

• If you are about to add many elements,
use the ensureCapacity(minSize)
method to have the ArrayList resize to a
desired capacity
– Note: there is also a constructor that can set

the initial capacity

February 7, 2017

OOP: Thinking in Classes

48

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Getting/Setting Elements
• To access the value of an existing element,

use the get(index) method

• To change the value of an existing element,
use the set(index,value) method

• For both methods, an
IndexOutOfBoundsException is thrown if…
(index < 0 || index >= size())

February 7, 2017

OOP: Thinking in Classes

49

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
ArrayList<Character> a = new ArrayList<>();

a.add('h');
a.add('i');
a.add('j');
a.set(2, '!');

System.out.printf("%c%c%c%n",
a.get(0), a.get(1), a.get(2));

February 7, 2017

OOP: Thinking in Classes

50

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Removing Elements
• You can erase elements from the list via

the remove and clear methods
clear()
remove(index)
remove(value)

• Only first occurrence; returns true if list changed

• Note: removal requires copying all
elements that follow the removed index,
and can thus be slow in large lists

February 7, 2017

OOP: Thinking in Classes

51

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Shrinking the List
The trimtoSize() method reduces the
capacity of the ArrayList to the current
size, thereby saving memory

list.clear() // size = 0, capacity = ?
list.trimToSize() // capacity = 0

February 7, 2017

OOP: Thinking in Classes

52

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public static void printList(ArrayList<Character> l) {

for (Character c : l) {
System.out.printf("%c",c);

}
System.out.printf("%n");

}

public static void removeAll(ArrayList<Character> l, Character c) {
while (l.remove(c));

}

public static void main(String[] args) {
ArrayList<Character> word = new ArrayList<>();
word.add('h');
word.add('e');
word.add('l');
word.add('l');
word.add('o');
printList(word); // hello (size=5, capacity=10)
removeAll(word, 'l');
word.trimToSize();
printList(word); // heo (size=3, capacity=3)

}

February 7, 2017

OOP: Thinking in Classes

53

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Take Home Points
• Class abstraction means to separate class implementation

from the use of the class – encapsulate functionality and hide
unnecessary details from users

• The wrapper and String classes have many useful methods
and are all immutable
– Note: String literals are interned automatically for reasons of

efficiency

• To improve performance, the StringBuilder class should be
used when there is a need to modify a string

• The ArrayList class has useful methods to allow you to
grow and shrink an array of elements

February 7, 2017

OOP: Thinking in Classes

54

