Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

OOP: Thinking in Classes

L ecture 3

OOP: Thinking in Classes

February 7, 2017 1

Abstraction and Encapsulation

» Class abstraction means to separate class
implementation from the use of the class

* The creator of the class provides a description of
the class via public methods/variables

— This lets the user know what the class can do

 The user of the class does not need to know how
the class is implemented

— Thus the details of class implementation are
encapsulated and hidden from the user

OOP: Thinking in Classes

February 7, 2017 2

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

* The public methods
form a contract via
public (+)
methods/constants Circle

-radius: double

" : +Circle()
 Client interacts sCircla(r: dowle)
through these means recthrea(y: double

and need not know
the details of
Implementation

OOP: Thinking in Classes

February 7, 2017 n

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Wrapper Classes
. Java has built-in Primitive | Wrapper

“wrapper” classes for € e
L short Short

all primitive types - —
long Long
float Float

double Double

boolean Boolean

char Character

OOP: Thinking in Classes

February 7, 2017 4

General Wrapper Detalls

* These classes do NOT have no-arg
constructors

* The instances of all wrapper classes are
immutable

— Their internal values cannot be changed once
the objects are created

OOP: Thinking in Classes
February 7, 2017 5

Wentworth Institute of Technology

COMP1050 — Computer Science Il | Spring 2017

Derbinsky

The Integer and Double Classes

java.lang.Integer

java.lang.Double

-value: int
+MAX VALUE: int
+MIN VALUE: int

-value: double
+MAX VALUE: double
+MIN VALUE: double

+Integer(value: int)
+Integer(s: String)
+byteValue(): byte
+shortValue(): short
+intValue(): int
+longValue(): long
+floatValue(): float
+doubleValue(): double
+compareTo(o: Integer): int
+toString(): String
+valueOf(s: String): Integer
+valueOf(s: String, radix: int): Integer

+parseInt(s: String): int
+parselInt(s: String, radix: int): int

+Double(value: double)

+Double(s: String)

+byteValue(): byte

+shortValue(): short

+intValue(): int

+longValue(): long

+floatValue(): float

+doubleValue(): double

+compareTo(o: Double): int

+toString(): String

+valueOf(s: String): Double

+valueOf(s: String, radix: int): Double
+parseDouble(s: String): double
+parseDouble(s: String, radix: int): double

OOP: Thinking in Classes

February 7, 2017 6

Creating Wrappers

* You can construct a wrapper object either
from a primitive data type value or from a
string representing the numeric value

* The valueOf static methods create new
objects from a string representation

* The parseing static methods extract primitive
values from a string representation

« Radix: numeric base

OOP: Thinking in Classes

February 7, 2017 7

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

What is the output of the following code...

System.out.printf("%d%n",
Integer.parseInt("14"));

System.out.printf("%d%n",
Integer.parselInt("14", 10));

System.out.printf("%d%n",
Integer.parselInt("14", 16));

OOP: Thinking in Classes

February 7, 2017 8

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer

14
14
20

OOP: Thinking in Classes

February 7, 2017 9

Conversion Methods

* The doubleValue, intValue, ... allow
you to convert objects to primitives

System.out.printf("%d%n",
new Double("14.1").intValue());

OOP: Thinking in Classes
February 7, 2017 10

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Class Constants

 MAX_VALUE

— Maximum value of the corresponding primitive data
type

int iMax = Integer.MAX_VALUE; // 2147483647
double dMax = Double.MAX VALUE; // 1.80e+308

* MIN VALUE
— Float/Double: minimum positive value

int iMin = Integer.MIN_VALUE; // -2147483648
double dMin = Double.MIN VALUE; // 4.90e-324

OOP: Thinking in Classes
February 7, 2017 11

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Comparison

The compareTo(o) method returns...
0: this and o are equal
< 0: this is smaller/o is bigger
> 0: this is bigger/o is smaller

final Integer i = new Integer(5);

System.out.printf("%d%n",
i.compareTo(5)); // ©

System.out.printf("%d%n",
i.compareTo(10)); // -1

System.out.printf("%d%n",
i.compareTo(2)); // 1

OOP: Thinking in Classes
February 7, 2017 12

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Write a method biggerOf that takes two int’s
and returns a String...

System.out.printf("%s%n",
biggerof(1, 100)); // b

System.out.printf("%s%n",
biggerof (100, 1)); // a

System.out.printf("%s%n",
bigger0f (100, 100)); // equal

OOP: Thinking in Classes
February 7, 2017 13

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer

public static String biggerOf(int a, int b) {
final int ¢ =
Integer.valueOf(a).compareTo(Integer.valueOf(b));

return (c==0)?"equal":((c>9)?"a":"b");

OOP: Thinking in Classes
February 7, 2017 P

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

The String Class

« Construction
String s1 = "Things";
String s2 = new String("Stuffs");

« Length, Character
sl.length(), sl.charAt(i)

« Concatenation
String s3 = sl.concat(s2) // sl + s2

* Substring
sl.substring(2) // "ings"
s2.substring(1, 5) // "tuff"

« Comparisons
sl.equals(s2), s2.compareTo(sl)

OOP: Thinking in Classes
February 7, 2017 15

Strings are Immutable

 AString object is immutable — once

constructed, its contents cannot be
changed

* \WWhat does the following code do?

String s = "hello";
s = "world";

OOP: Thinking in Classes
February 7, 2017

16

Wentworth Institute of Technology COMP1050 — Computer Science Il |

Spring 2017

Derbinsky

Trace Code (1)

String s = "hello";

s = "world";

Memory

OOP: Thinking in Classes
February 7, 2017

: String

"hello"

17

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Trace Code (2)
String s = "hello";

s = "world";

: String

"hello"

Memory

S ‘“‘-,-----.---‘
: String

"world"

OOP: Thinking in Classes
February 7, 2017 18

Interned Strings

» Strings are immutable and are frequently
used

* So to improve efficiency and save
memory, the JVM uses a unique instance
for string literals with the same character
sequence

e Such an instance is called interned

OOP: Thinking in Classes
February 7, 2017 19

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

"Things";

String sl
new String("Things");

String s2

String s3 = "Things";

OOP: Thinking in Classes
February 7, 2017 20

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

String sl = "Things";

String s2 = new String("Things");

String s3

: String
,,,,,,,,,,,,,,,’,,,ff”"””””' "things"
Memory
sl

"Things";

OOP: Thinking in Classes
February 7, 2017 1

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

String sl = "Things";

String s2 = new String("Things");

"Things";

String s3

: String
/ things”
Memory
sl ,

: String
S2

"things"

OOP: Thinking in Classes
February 7, 2017 -

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

String s1 = "Things";
String s2 = new String("Things");

String s3 = "Things";
: String
"things"
Memory
sl > : String
52 "things"
s3

OOP: Thinking in Classes
February 7, 2017 3

String Interning

* A new object is created if you use the new
operator.

» When you use the string initializer (= ""),

no new object is created if the interned
object already exists

OOP: Thinking in Classes
February 7, 2017 24

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

What is output to the terminal when the following code is
executed?

String s1 = "Things";
String s2 = new String("Things");
String s3 = "Things";

System.out.printf("%b %b%n", sl==s2, sl.equals(s2));
System.out.printf("%b %b%n", sl==s3, sl.equals(s3));
System.out.printf("%b %b%n", s2==s3, s2.equals(s3));

OOP: Thinking in Classes
February 7, 2017 o5

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer

false true
true true
false true

OOP: Thinking in Classes
February 7, 2017 6

String Replacement

 replace(oldC: char, newC: char): String

— Returns a new string that replaces all matching
characters in this string with the new character

 replaceFirst(oldS: String, newS: String): String

— Return a new string that replaces the first matching
substring in this string with the new substring

* replaceAll(oldS: String, newS: String): String

— Returns a new string that replaces all matching
substrings in this string with a new substring

OOP: Thinking in Classes
February 7, 2017 7

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

What is output to the terminal when the
following code is executed...

final String w = "Welcome";
System.out.printf("%s%n", w);
w.replace('e', 'E');
System.out.printf("%s%n", w);

OOP: Thinking in Classes
February 7, 2017 08

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer: Immutability!

Welcome
Welcome

OOP: Thinking in Classes
February 7, 2017 9

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Exercise

What is output to the terminal when the
following code is executed...

System.out.printf("%s%n",
"Welcome".replace('e', 'E'));

System.out.printf("%s%n",
"Welcome".replaceFirst("e", "EE"));

System.out.printf("%s%n",
"Welcome".replaceAll("e", "EE"));

System.out.printf("%s%n",
"Welcome".replaceFirst("el", "EE"));

OOP: Thinking in Classes
February 7, 2017 30

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer

WElcomE
WEElcome
WEElcomEE
WEEcome

OOP: Thinking in Classes
February 7, 2017 31

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

split(delimiter: String): String[]

— Returns an array of strings consisting of the
substrings split by the delimiter

for (String s : "Hello World".split(" ")) {
System.out.printf("%s%n", s);

OOP: Thinking in Classes
February 7, 2017 32

Regular Expressions

* Aregular expression is a way of
expressing a pattern of characters

— Frequently used to test inputs, as well as
search/replace string contents

* They are quite complex and flexible —
you'll learn plenty about them in later
classes

— Here’s just a taste...

OOP: Thinking in Classes
February 7, 2017 33

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Example RegEXx's

e "abc”"
— Only matches "abc"
e ".*abc.*"
— Contains "abc”
— . = any character, ¥*=any number of times

+ "(abc)*"
— Either " or "abc" or "abcabc" or ...
+ "(abc)+"
— Either "abc" or "abcabc” or ...
+ "[abc]"
— Either "a" or "b" or "c¢”
- "[abc]+"
— A string composed of one or more a’s, b’s, and/or c’s

OOP: Thinking in Classes
February 7, 2017 34

Regular Expression Methods

 matches(regex: String): boolean

— Returns true if the string matches the regular
expression

"Java is fun".matches("Java.*"); // true
"Java is cool".matches("Java.*"); // true

* The split, replaceFirst, and replaceAll
methods can also use regular expressions

OOP: Thinking in Classes
February 7, 2017 35

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

System.out.printf(
"a+b$itc" .replaceAll("[$+#]", "NNN"));

for (String s : "a,b;c".split("[,;]")) {
System.out.printf("%s%n", s);

OOP: Thinking in Classes
February 7, 2017 36

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

 The String class is immutable, and so

creating strings incrementally can be very
inefficient (new instances are being
created and thrown away)

 The StringBuilder class allows you to
add/remove modify contents as you wish

OOP: Thinking in Classes
February 7, 2017 37

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

StringBuilder sb = new StringBuilder();
sb.append("Welcome");

sb.append(' ');

sb.append("to");

sb.append(' ');

sb.append("Java!");

System.out.printf("%s%n", sb);
// Welcome to Java!

OOP: Thinking in Classes
February 7, 2017 38

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Example (2)

sb.insert(11, "HTML and "); // Welcome to HTML and Java!
sb.delete(8, 11); // Welcome HTML and Java!
sb.deleteCharAt(sb.length()-1); // Welcome HTML and Java
sb.reverse(); // aval dna LMTH emocleW
sb.reverse().replace(8, 16, "HTML"); // Welcome HTML Java

sb.setCharAt(0, 'w'); // welcome HTML Java

OOP: Thinking in Classes
February 7, 2017 39

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Write a method that takes as a parameter an
array of Strings and returns all the words

concatenated into a single string using a
StringBuilder

OOP: Thinking in Classes
February 7, 2017 m

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Answer

public static void main(String[] args) {

String[] myWords = {"Dog","Cat","Fish","Bird","Horse"};
System.out.printf("%s%n",makeSentence(myWords));

public static String makeSentence(String[] words) {
StringBuffer sentence = new StringBuffer();
for(String w: words){
sentence.append(w);

}

return sentence.toString();

OOP: Thinking in Classes
February 7, 2017 41

(]
The ArrayList Class

« So far, when we wanted to store many values
of the same type, we used an array

 However, we have seen that with arrays, we
need to know the size ahead of time, and
can't adjust later

 The ArraylList class contains an array, and
supports array-like methods, but can grow
and shrink as necessary
— A great example of encapsulating complex
behavior within a class

OOP: Thinking in Classes
February 7, 2017 42

Creating an ArrayList

ArrayList<Type> a = new ArrayList<Type>();

» Like an array, when you create an
ArraylList, you provide a data type for all

elements, via the <Type>, which must be a
class (note: wrapper classes come in handy!)

— ArraylList is an example of a class that can be

parameterized by a type, known as a generic
class

* You must import ArraylList from java.util

OOP: Thinking in Classes
February 7, 2017 43

Creating an Empty ArrayList

ArrayList<Integer> a = new ArrayList<Integer>();

ArrayList<Double> b

new ArrayList<Double>();

ArrayList<String> c¢ = new ArrayList<String>();

Note: you can leave off the second <Type> if you wish...

ArrayList<Integer> a = new ArrayList<>();

OOP: Thinking in Classes
February 7, 2017 44

(] u (]
ArrayList Size vs. Capacity

* Once an Arraylist is initialized, it is
useful to think of it as encapsulating a
partially filled array

* Two key properties:

— Size: how many elements are in the list
« Default constructor: O; via size() and isEmpty()

— Capacity: the size of the internal array
e Default constructor: 10; not accessible

OOP: Thinking in Classes
February 7, 2017 45

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

 Add an element to the end of the list via the
add method

ArrayList<Integer> a = new
ArrayList<>();

System.out.println(a.size()); // ©
a.add(3);
a.add(1);
a.add(4);
System.out.println(a.size()); // 3

OOP: Thinking in Classes
February 7, 2017 46

Resizing Behavior

 Whenever an element is added such that the new

size would exceed the capacity of the underlying
array, the ArrayList automatically resizes to

accommodate, and copies old data

 Basic idea:

newArray = new Type[newSize];

for (int i=0; i<oldSize; i++)
newArray[i] = listArray[i];

listArray = newArray;

OOP: Thinking in Classes
February 7, 2017

47

Resizing Efficiently

» Copying arrays can become
computationally expensive

* |f you are about to add many elements,
use the ensureCapacity(minSize)
method to have the ArrayList resize to a

desired capacity
— Note: there Is also a constructor that can set
the initial capacity

OOP: Thinking in Classes
48

February 7, 2017

Getting/Setting Elements

* To access the value of an existing element,
use the get(index) method

* To change the value of an existing element,
use the set(index,value) method

 For both methods, an
IndexOutOfBoundsException is thrown if...
(index < O || index >= size())

OOP: Thinking in Classes
February 7, 2017 49

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

ArrayList<Character> a = new ArraylList<>();

.add('h');
.add('i');
.add('J");
.set(2, '!");

Qv OV V QD

System.out.printf("%ckclkckn",
a.get(0), a.get(1l), a.get(2));

OOP: Thinking in Classes
February 7, 2017 50

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Removing Elements

* You can erase elements from the list via
the remove and clear methods

clear()
remove(index)

remove(value)
* Only first occurrence; returns true if list changed

* Note: removal requires copying all
elements that follow the removed index,

and can thus be slow in large lists

OOP: Thinking in Classes
51

February 7, 2017

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

The trimtoSize() method reduces the
capacity of the ArrayList to the current
size, thereby saving memory

list.clear() // size = 0, capacity = ?
list.trimToSize() // capacity = ©

OOP: Thinking in Classes
February 7, 2017 5>

Wentworth Institute of Technology COMP1050 — Computer Science |l

Example

public static void printList(ArrayList<Character> 1) {
for (Character c : 1) {
System.out.printf("%c",c);

}

System.out.printf("%n");

}

public static void removeAll(ArrayList<Character> 1, Character c) {

while (1l.remove(c));

}

public static void main(String[] args) {
ArrayList<Character> word = new ArrayList<>();

word.add('h');
word.add('e');
word.add('1");
word.add('1");
word.add('o");

printList(word); // hello (size=5, capacity=10)

removeAll(word, '1');
word.trimToSize();
printList(word);

OOP: Thinking in Classes
February 7, 2017

// heo (size=3, capacity=3)

Spring 2017

Derbinsky

53

Wentworth Institute of Technology COMP1050 — Computer Science Il | Spring 2017 | Derbinsky

Take Home Points

« (Class abstraction means to separate class implementation
from the use of the class — encapsulate functionality and hide
unnecessary details from users

« The wrapper and String classes have many useful methods
and are all immutable

— Note: String literals are interned automatically for reasons of
efficiency

« To improve performance, the StringBuilder class should be
used when there is a need to modify a string

 The ArraylList class has useful methods to allow you to

grow and shrink an array of elements

OOP: Thinking in Classes
February 7, 2017 54

