
Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

OOP: Objects and Classes

Lecture 2

January 24, 2017

OOP: Objects and Classes

1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

OO Programming Concepts
• Object-oriented programming (OOP) involves

programming using objects.
– An object represents an entity in the real world

that can be distinctly identified, such as a desk, a
button, a car, etc.

• An object has…
– Unique identity (think memory address)
– State, consisting of a set of data fields (also

known as properties) with their current values
– Behavior, defined by a set of methods

January 24, 2017

OOP: Objects and Classes

2

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Classes
• A class is a template, blue-print, or
contract that defines what an object’s data
fields and methods will be
– Typically in its own file (name of the file =

name of the class)

• Every object is an instance of some class
– Think of the class as the data type, whereas

an object is a variable of that type

January 24, 2017

OOP: Objects and Classes

3

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example: Circles
• Class: Circle

– All circles have…
• A radius

– All circles can…
• Tell you their area
• Get/set radius

• Some example
circles…
– c1: radius=5
– c2: radius=10
– c3: radius=5

• Distinct from c1!
– c4: radius=1

January 24, 2017

OOP: Objects and Classes

4

Class:	Circle

Data	Fields:
- radius

Methods:
- getArea()
- getRadius()
- setRadius(r)

Object:	c1
- Class:	Circle

Data	Fields:
- radius=5

Object:	c2
- Class:	Circle

Data	Fields:
- radius=10

Object:	c3
- Class:	Circle

Data	Fields:
- radius=5

Object:	c4
- Class:	Circle

Data	Fields:
- radius=1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Code: Circles

public class Circle {

private double radius = 1.0;

public Circle() {
}

public Circle(double r) {
setRadius(r);

}

public double getRadius() {
return radius;

}

public void setRadius(double r) {
if (r>0) {

radius = r;
}

}

public double getArea() {
return Math.PI * radius * radius;

}
}

Circle c1 = new Circle(5);
Circle c2 = new Circle(10);
Circle c3 = new Circle(5);
Circle c4 = new Circle();

January 24, 2017

OOP: Objects and Classes

5

Circle.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Output: Circles
Circle c1 = new Circle(5);
Circle c2 = new Circle(10);
Circle c3 = new Circle(5);
Circle c4 = new Circle();

System.out.printf("Circle 1 (%s): r=%.2f A=%.2f%n",
c1, c1.getRadius(), c1.getArea());

System.out.printf("Circle 2 (%s): r=%.2f A=%.2f%n",
c2, c2.getRadius(), c2.getArea());

System.out.printf("Circle 3 (%s): r=%.2f A=%.2f%n",
c3, c3.getRadius(), c3.getArea());

System.out.printf("Circle 4 (%s): r=%.2f A=%.2f%n",
c4, c4.getRadius(), c4.getArea());

January 24, 2017

OOP: Objects and Classes

6

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

UML: Circles

January 24, 2017

OOP: Objects and Classes

7

Circle

radius: double

Circle()
Circle(r: double)
getRadius(): double
setRadius(r: double)
getArea(): double

c1: Circle

radius = 5

c2: Circle

radius = 10

c3: Circle

radius = 5

c4: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Constructors
• A constructor is a special type of method that is

invoked to construct an object from its class

• All classes have at least one constructor

• All constructor(s) for a class…
– Have the same name as the class
– Have no return type (not even void)
– A constructor with no parameters is referred to as a no-arg

constructor

• A constructor is invoked exactly once for an object
automatically via the new operator

January 24, 2017

OOP: Objects and Classes

8

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Default Constructors
• A class may be defined without any

constructors

• In this case, a no-arg constructor with an
empty body is implicitly defined in the class

• This default constructor is provided
automatically only if no constructors are
explicitly defined in the class

January 24, 2017

OOP: Objects and Classes

9

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (1)

public class Circle {

private double radius = 1.0;

public Circle(double r) {
setRadius(r);

}

public double getRadius() {
return radius;

}

public void setRadius(double r) {
if (r>0) {

radius = r;
}

}

public double getArea() {
return Math.PI * radius * radius;

}
}

Circle c1 = new Circle(5);
Circle c2 = new Circle(10);
Circle c3 = new Circle(5);
Circle c4 = new Circle();

January 24, 2017

OOP: Objects and Classes

10

Circle.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (2)

public class Circle {

private double radius = 1.0;

public double getRadius() {
return radius;

}

public void setRadius(double r) {
if (r>0) {

radius = r;
}

}

public double getArea() {
return Math.PI * radius * radius;

}
}

Circle c1 = new Circle(5);
Circle c2 = new Circle(10);
Circle c3 = new Circle(5);
Circle c4 = new Circle();

January 24, 2017

OOP: Objects and Classes

11

Circle.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Reference Variables
• To reference an object, assign the object

to a reference variable

• To declare a reference variable…
ClassName objectRefVar;

• Example:
Circle c;

January 24, 2017

OOP: Objects and Classes

12

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Referencing a Newly Created Object
• The new operator creates a new object

and returns a reference

new Circle();

• Thus the typical pattern…

Circle c = new Circle();

January 24, 2017

OOP: Objects and Classes

13

Create	a	new	
objectAssign	object	

reference

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Accessing Object’s Members
• Accessing class/object data/methods is

achieved via the dot (.) operator

• Member variables
objRefVar.data
e.g. c.radius

• Member methods
objRefVar.methodName(args)
e.g. c.getArea()

January 24, 2017

OOP: Objects and Classes

14

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (1)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

15

Memory

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (2)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

16

nullcA
Memory

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (3)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

17

nullcA
Memory

c1: Circle

radius = 5

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (4)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

18

cA
Memory

cA: Circle

radius = 5

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (5)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

19

null
cA

Memory

cA: Circle

radius = 5

cB

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (6)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

20

null
cA

Memory

cA: Circle

radius = 5

cB

cB: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (7)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

21

cA
Memory

cA: Circle

radius = 5

cB

cB: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Trace Code (8)
Circle cA = new Circle(5.0);
Circle cB = new Circle();
cB.setRadius(100);

January 24, 2017

OOP: Objects and Classes

22

cA
Memory

cA: Circle

radius = 5

cB

cB: Circle

radius = 100

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The Value null
• In Java, null is a special literal value that

indicates an invalid reference (that is, the
variable does not refer to an object)

• Trying to access member data/methods of
null results in a NullPointerException

Circle c4 = null;
System.out.printf("%s%n", c4);
System.out.printf("%d%n", c4.getRadius());

January 24, 2017

OOP: Objects and Classes

23

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Default Values for Member Data
• The default value of member data for an

object depends on the data type
– Reference: null
– Numeric: 0
– boolean: false
– char: '\u0000' (basically ASCII 0)

• However, Java assigns no default value to
local variables inside methods

January 24, 2017

OOP: Objects and Classes

24

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example

public class Stuff {
public int value;

}

Stuff things = new Stuff();

int x;

System.out.printf("%d%n",
things.value);

System.out.printf("%d%n",
x);

January 24, 2017

OOP: Objects and Classes

25

Stuff.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exercise
• Define a Student class to have the

following data fields
– lastName (String)
– age (int)
– isScienceMajor (boolean)
– firstInitial (char)

• Create an instance of the Student class
and print out the default value of all the
data fields

January 24, 2017

OOP: Objects and Classes

26

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution

public class Student {
public String lastName;
public int age;
public boolean isScienceMajor;
public char firstInitial;

}

Student s1 = new Student();

System.out.printf("%s%n",
s1.lastName); // null

System.out.printf("%d%n",
s1.age); // 0

System.out.printf("%b%n",
s1.isScienceMajor); // false

System.out.printf("%c%d%n",
s1.firstInitial,
(int) s1.firstInitial); // 0

January 24, 2017

OOP: Objects and Classes

27

Student.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Primitive Data Types vs. Objects
int i = 1;
Circle c = new Circle();

January 24, 2017

OOP: Objects and Classes

28

1i
Memory

c: Circle

radius = 1

c

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Primitive Assignment

int i = 1, j = 2;

i = j;

• Before assignment

• After assignment

January 24, 2017

OOP: Objects and Classes

29

Code Memory

1
2

i
Memory

j

2
2

i
Memory

j

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Object Assignment

Circle cA =
new Circle(5);

Circle cB =
new Circle(10);

cA = cB;

• Before assignment

• After assignment

January 24, 2017

OOP: Objects and Classes

30

Code Memory

cA: Circle

radius = 5

cB: Circle

radius = 10

cA
Memory

cB

cA
Memory

cB

😢

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Garbage Collection
• After the assignment statement c1 = c2, c1

points to the same object referenced by c2

• The object previously referenced by c1 is no
longer referenced – this object is known as
garbage

• Garbage is automatically cleaned up by the
JVM via Garbage Collection (GC)

January 24, 2017

OOP: Objects and Classes

31

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

GC Pro Tips
• If you know that an object is no longer

needed, you can explicitly assign null to
a reference variable for the object

• The JVM will automatically collect the
space if the object is not referenced by
any variable … eventually (i.e. you don’t
have direct control)

January 24, 2017

OOP: Objects and Classes

32

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Static vs. Instance

• Shared by ALL instances of
a class
– Method: only can use static

variables
– Variable: can be used by any

instance

• Invoked via
Class.var/method()

• Specified via static
keyword

• Tied to a specific instance
of a class
– Method: can use static AND

member variables
– Variable: can only be used

by its instance

• Invoked via
objRef.var/method()

• Specified via the lack of
static keyword

January 24, 2017

OOP: Objects and Classes

33

Static Instance

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example

public class Person {
private static int numPeople = 0;
private final int myId;

public Person() {
numPeople++;
myId = numPeople;

}

public int getId() {
return myId;

}

public String getBorgId() {
return String.format("%d of %d",

myId, numPeople);
}

public static int getNumPeople() {
return numPeople;

}
}

System.out.printf("Peeps: %d%n",
Person.getNumPeople());

Person a = new Person();
System.out.printf("A: %s%n",

a.getBorgId());
System.out.printf("Peeps: %d%n",

Person.getNumPeople());

Person b = new Person();
System.out.printf("A: %s%n",

a.getBorgId());
System.out.printf("B: %s%n",

b.getBorgId());
System.out.printf("Peeps: %d%n",

Person.getNumPeople());

January 24, 2017

OOP: Objects and Classes

34

Person.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

UML & Memory

January 24, 2017

OOP: Objects and Classes

35

Person
numPeople: int
id: int

Person()
getId(): int
getBorgId(): String
getNumPeople(): int

a: Person
numPeople = 2
id = 1

b: Person
numPeople = 2
id = 2

2
1
2

Memory

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Packages
• Packages are a way to organize classes

– Useful for managing large projects, allowing
overlap of class names, and controlling
access to sensitive data (more in Visibility)

• Specified via the package keyword
package packageName;
– Must be first in the file, none = “default”

package (discouraged)

January 24, 2017

OOP: Objects and Classes

36

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Package Naming & Directory Structure
• It is common practice to preface the

package name with a unique identifier
owned by the author (by convention a URL
in reverse)
– Example: edu.wit.cs.comp1050

• Java requires that any dots (.) in the
package name correspond to folders in the
file system

January 24, 2017

OOP: Objects and Classes

37

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Visibility Modifiers
• Way of specifying what code can “see” (i.e.

directly access) a variable/method
– By default, operate under a “need-to-know” basis

(i.e. most constraining)
– No modifier = package-private
– More on protected/subclass soon!

January 24, 2017

OOP: Objects and Classes

38

Class Package Subclass World
public ✓ ✓ ✓ ✓

protected ✓ ✓ ✓

no	modifier ✓ ✓

private ✓

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (1)

package p1;

public class Foo {
private int x;
int y;
public int z;

public Foo() {
x = y = z = 1;
f1();
f2();
f3();

}

private void f1() {}
void f2() {}
public void f3() {}

}

package p1;

public class Bar {
public static void main(String[] args) {

Foo f = new Foo();

f.x*=2;
f.y++;
f.z--;

f.f1();
f.f2();
f.f3();

}
}

January 24, 2017

OOP: Objects and Classes

39

Foo.java Bar.java

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (2)

package p1;

public class Foo {
private int x;
int y;
public int z;

public Foo() {
x = y = z = 1;
f1();
f2();
f3();

}

private void f1() {}
void f2() {}
public void f3() {}

}

package p2;

import p1.Foo;

public class Baz {
public static void main(String[] args) {

Foo f = new Foo();

f.x*=2;
f.y++;
f.z--;

f.f1();
f.f2();
f.f3();

}
}

January 24, 2017

OOP: Objects and Classes

40

Foo.java Baz.java

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup
What is wrong with the following code…

public class Test {
int x;

public Test(String t) {
System.out.printf("Hello");

}

public static void main(String[] args) {
Test test = new Test();
System.out.println(test.x);

}
}

January 24, 2017

OOP: Objects and Classes

41

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Solution
What constructor is being used for the first
line of main()…?

January 24, 2017

OOP: Objects and Classes

42

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Passing Objects to Methods
• For both primitives and objects, the value

is passed to the method

• However, the “value” of an object is the
reference (think: memory address), and so
the object can actually be changed within
the method

January 24, 2017

OOP: Objects and Classes

43

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public static void inc(Circle c, int x) {

c.setRadius(c.getRadius()+1);
x++;

}

public static void main(String[] args) {
Circle c = new Circle(1);
int x = 1;

System.out.printf("%.2f %d%n", c.getRadius(), x);
inc(c, x);
System.out.printf("%.2f %d%n", c.getRadius(), x);

}

January 24, 2017

OOP: Objects and Classes

44

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (1)
Circle c = new Circle(1);

January 24, 2017

OOP: Objects and Classes

45

c
Memory

cA: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (2)
int x = 1;

January 24, 2017

OOP: Objects and Classes

46

1
c

Memory

x

cA: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (3)
inc(c, x);

January 24, 2017

OOP: Objects and Classes

47

1

1

c
Memory

x

cA: Circle

radius = 1

inc.x
inc.c

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (4)
in inc()
c.setRadius(c.getRadius()+1);

January 24, 2017

OOP: Objects and Classes

48

1

1

c
Memory

x

cA: Circle

radius = 2

inc.x
inc.c

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (5)
in inc()
x++;

January 24, 2017

OOP: Objects and Classes

49

1

2

c
Memory

x

cA: Circle

radius = 2

inc.x
inc.c

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Peek Into Memory (5)
after inc()

January 24, 2017

OOP: Objects and Classes

50

1
c

Memory

x

cA: Circle

radius = 2

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays of Objects
An array of objects is actually an array of
reference variables

Circle[] circles = new Circle[3];

January 24, 2017

OOP: Objects and Classes

51

circles
Memory

null
null
null

[0]
[1]
[2]

circles: Array

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays of Objects
An array of objects is actually an array of
reference variables

Circle[] circles = new Circle[3];
circles[0] = new Circle();

January 24, 2017

OOP: Objects and Classes

52

circles
Memory

null
null

[0]
[1]
[2]

circles: Array [0]: Circle

radius = 1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays of Objects
An array of objects is actually an array of
reference variables

Circle[] circles = new Circle[3];
circles[0] = new Circle();
circles[0].setRadius(5);

January 24, 2017

OOP: Objects and Classes

53

circles
Memory

null
null

[0]
[1]
[2]

circles: Array [0]: Circle

radius = 5

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

this Keyword
• Within an object method, this refers to

the “current” object

• Common uses
– Refer to private variables that have the same

name as a parameter
– Within a constructor, invoke another

constructor of the same class

January 24, 2017

OOP: Objects and Classes

54

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (1)

public class Circle {

private double radius = 1.0;

public Circle() {
}

public Circle(double radius) {
setRadius(radius);

}

public double getRadius() {
return radius;

}

public void setRadius(double radius) {
if (radius>0) {

this.radius = radius;
}

}

public double getArea() {
return Math.PI * radius * radius;

}
}

January 24, 2017

OOP: Objects and Classes

55

Circle.java Notes

• If a method parameter
has the same name as a
member variable, the
parameter name “hides”
the member variable

• To access the member
variable, use
this.varName

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (2)

public class Circle {

private double radius;

public Circle() {
this(1.0);

}

public Circle(double radius) {
setRadius(radius);

}

public double getRadius() {
return radius;

}

public void setRadius(double radius) {
if (radius>0) {

this.radius = radius;
}

}

public double getArea() {
return Math.PI * radius * radius;

}
}

January 24, 2017

OOP: Objects and Classes

56

Circle.java Notes

• The default constructor
now calls the specialized
constructor

• This makes sure all
attempts to change the
radius (via construction or
user) pass through
common validation,
reducing the risk of error

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The toString Method
• The toString method is used to return a

string representation of an object

• This is useful when debugging and using
terminal/file output on objects

• If the class does not have a method, a …
less-than-useful string will be shown (more
on how this works soon!)

January 24, 2017

OOP: Objects and Classes

57

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (1)

public class Name {
final private String fName;
final private String lName;

public Name(String fName, String lName) {
this.fName = fName;
this.lName = lName;

}
}

Name javaInventor = new Name("James", "Gosling");

System.out.printf("Java was invented by %s.%n",
javaInventor);

January 24, 2017

OOP: Objects and Classes

58

Name.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (2)

public class Name {
final private String fName;
final private String lName;

public Name(String fName, String lName) {
this.fName = fName;
this.lName = lName;

}

public String toString() {
return String.format("%s %s",

fName, lName);
}

}

Name javaInventor = new Name("James", "Gosling");

System.out.printf("Java was invented by %s.%n",
javaInventor);

January 24, 2017

OOP: Objects and Classes

59

Name.java Anywhere

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Take Home Points
• This lecture has covered many of the

basic elements of classes and objects

• It is important to remember primitive vs.
object memory organization, as it has
effects on assignment, parameters, etc.

January 24, 2017

OOP: Objects and Classes

60

