
Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Review

Lecture 1

January 17, 2017

COMP1000 Review

1

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

2

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

3

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

What Makes Up a Computer?
• Hardware

– Physical components
– Wide variety of types and manufacturers
– Abstracted to a simple set of ideas for

Computer Science

• Software
– Programs (i.e., instructions)
– Wide variety of purposes

January 17, 2017

COMP1000 Review

4

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

High Level Hardware View

January 17, 2017

COMP1000 Review

5

Processor (CPU)Input Devices

Storage Devices

Output Devices

Main Memory (RAM)

…

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Main Memory (RAM)

January 17, 2017

COMP1000 Review

6

…

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

01110011

01110100

01100001

01110111

01110010

01100001

01110011

01110010

Addresses

4 bytes at
address 0

2 bytes at
address 4

2 bytes at
address 6

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Running a Program

Processor (CPU)

Memory (RAM)

…

Data/Input Output

CPU	doesn't	
understand	Java	

directly

Storage Device

Program

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Compilers

Java
Compiler

Java Source Code

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}
}

Byte Code

01111010000101010100
10001101000110100011
11100101010100101001
10001010110001010000
01110101010111000110
01100100001001101010
10101001000011110001
11000000011110100010
1010101010010001110…

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Java Virtual Machine
• Java byte code also can't be executed by

a CPU directly
• Instead, the Java Virtual Machine (JVM) is

another program that interprets the byte
code and translates it into the native CPU
language
– Allows a program to be compiled once and

run on all types of computers (that have a
JVM available and installed)

• Other high level languages work differently

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Storage Device

Building a Java Program

Processor (CPU)

Memory (RAM)

…

Java Source
Code

Java Byte
Code

Java
Compiler

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Running a Java Program

Processor (CPU)

Memory (RAM)

…

Program
Input

Program
Output

Java Byte
Code

Storage Device

JVM

Libraries

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

12

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Variables
• Each variable has a name that the

programmer uses to access and modify
that variable's value

• Each variable holds exactly one value that
is stored in a particular memory location

• Over time, as a program executes, the
value of a variable can change

January 17, 2017

COMP1000 Review

13

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Variable Names
• In Java, variable names:

– Must start with either a letter (uppercase or
lowercase) or an underscore

– Must contain only letters, digits, and
underscores

– Are case sensitive

• Examples: count, x, user_input2
• Invalid names: 42, 5x, #yolo, file.cpp, a-b

January 17, 2017

COMP1000 Review

14

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Variable Declaration
• Every variable must be declared before you can

use it in your program

• Syntax: TYPE NAME;
– The type comes first, then then variable name,

followed by a semicolon

• Examples:
int count;
int num_vals;
double average;
char first_initial;

January 17, 2017

COMP1000 Review

15

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Data Types
• There are 8 “primitive” data types in Java

byte, short, int, long, float,
double, boolean, char

• These are all built-in types – all others hold
“references” (think memory address) of an
instance of some class (i.e. in object)
– Whereas the values of primitives are themselves

useful as data (e.g. true, 8, ‘a’), these hold
addresses to data that is actually elsewhere

January 17, 2017

COMP1000 Review

16

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Data Types (1)
• int

– Integer, whole numbers; 4 bytes
– Examples: 0, 15, -100464, 420712003, -1
– Range: -231 (-2147483648) to 231-1 (2147483647)

• double
– Numbers with fractional component (15-digit prec); 8 bytes
– Examples: 11.23, -959.75, 0.5, -1.0
– Range: ~10-308 to ~10308, positive or negative

• boolean
– Only values: true, false; at least 1 byte

January 17, 2017

COMP1000 Review

17

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Data Types (2)
• char

– Single character or symbol; 2 bytes
– Examples: 'a', 'C', '3', '.', '$'
– Actually numeric codes referring to the ASCII

table (http://asciitable.com)

January 17, 2017

COMP1000 Review

18

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Data Types (3)
• String

– A sequence of characters and/or symbols
– Examples: "Hello World", "475!", "a", "$”
– Non-primitive (how do we know?)

• Useful: length(), charAt(), equals(), …
• Concatenation: String + String

January 17, 2017

COMP1000 Review

19

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Literals
• When you type a variable value in source

code, this is referred to as a “literal” – the
representation of a fixed value

• The way you write the literal implicitly
indicates its data type
double: decimal (3.14), sci. not. (6.02e23)
char: single quotes ('a')
String: double quotes ("hello")

January 17, 2017

COMP1000 Review

20

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Mixing Types
• In general, avoid or be careful

• Integers and characters interchange via the ASCII
table codes

• Casting: operation that converts a value of one
data type to another
– Syntax: (type) value
– Narrowing: larger -> smaller range

int x = (int) 1.7; // 1
– Widening: smaller -> larger

double y = (double) 1 / 2; // 0.5

January 17, 2017

COMP1000 Review

21

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Variable Initialization
• Before you use a variable, it MUST have a value

• You can initialize a variable when you declare it or
you can do so afterwards
– Syntax after declaration: NAME = VALUE;
– Syntax during declaration: TYPE NAME = VALUE;

• Examples
count = 0;
ultimate_answer = 42;
int num_vals = 10;
double pi = 3.14159;

January 17, 2017

COMP1000 Review

22

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Mutability
• A variable that can change its value is

mutable

• A variable that cannot is called immutable or
a constant

• Use the final keyword to create a constant -
the compiler will ensure it receives exactly
one value
– By convention, use all caps for the name (e.g.
Math.PI)

January 17, 2017

COMP1000 Review

23

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

The Value null
• For any non-primitive, the null value says

that it points to an invalid/non-existent
object (think: bad memory address)

• This is the default value in some
circumstances (e.g. member variable,
array value)

January 17, 2017

COMP1000 Review

24

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Terminal Input
• Java doesn't (easily) allow reading directly

from System.in

• Instead, you use a Scanner object that
handles reading the input and ensures that
the type of data you read matches what
you want

January 17, 2017

COMP1000 Review

25

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Using a Scanner
• Declare and initialize a Scanner object

Scanner s = new Scanner(System.in);
– One per program!
– Requires import java.util.Scanner;

• Call methods on the Scanner object to read
different types of values from the terminal
int var = s.nextInt();
double var = s.nextDouble();
String var = s.next();
String var = s.nextLine(); // whole line

• Careful mixing with others due to whitespace handling

January 17, 2017

COMP1000 Review

26

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Terminal Output
• You should get into the habit of using

formatted printing by default
System.out.printf("format", arg1, arg2, …);
String s = String.format("format", arg1, arg2, …);

• % in the format string followed by a
converter, with optional flag(s) in between
– Aside from new line, expects corresponding

argument (1st % -> 1st arg, 2nd -> 2nd, …)

January 17, 2017

COMP1000 Review

27

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Common Converters/Flags

January 17, 2017

COMP1000 Review

28

Converter Flag Description

d An integer

f A float (includes double)

s A String

b A Boolean

n New line

+ Includes the sign (positive or negative)

, Includes grouping characters

.3 Three places after the decimal.

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Quick Check
What is the output to the terminal when the
following code is run?

String a = String.format("W%sT", "I");
String b = String.format("%d2%d", "!".length(), a.length());
System.out.printf("%s %s%n%.2f!%n", a, b, 3.14159);

January 17, 2017

COMP1000 Review

29

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

30

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Operator Precedence

() parentheses

*, /, % multiplication, division, mod

+, - addition, subtraction

= assignment

For binary operators, if both operands are int
values, then the result is an int value; else double

January 17, 2017

COMP1000 Review

31

Evaluated
First

Evaluated
Last

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Quick Check: x=?
• int x = 5/2;
• double x = 5/2;
• int x = 5.0/2;
• double x = 5.0/2;
• int x = 5/4*4;
• int x = 5/(4*4);
• double x = 5/4*4.0;
• int x = 5.0/4*8;
• double y = 5;

double x = 1+y*(y/2);

• 2
• 2.0
• Error!
• 2.5
• 4
• 0
• 4.0
• Error!

• 13.5

January 17, 2017

COMP1000 Review

32

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

More Operators
• x += a; // x = x + a

– Also: -= *= /=

• x++; // x = x + 1
– Also: --

January 17, 2017

COMP1000 Review

33

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Math Class
Remember useful static methods available
via the Math class

Math.sqrt(double)
Math.pow(double, double)
Math.abs(double)
Math.log(double)
Math.log10(double)
…

January 17, 2017

COMP1000 Review

34

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Boolean Expression
An expression that evaluates to a true or false

Comparison operators, returns true if…

!a (a is false)
a == b (a is equal to b)
a != b (a is not equal to b)
a < b (a is less than b)
a <= b (a is less than or equal to b)
a > b (a is greater than b)
a >= b (a is greater than or equal to b)

January 17, 2017

COMP1000 Review

35

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Equality Gotcha
• Remember, equality only works for constant values/primitive

variables – not objects!
• Object variables hold a reference (think memory address), so

equality is asking if they are actually the same object

String a = "WIT";
String b = "wit".toUpperCase();
System.out.printf("%b%n", a==b);
System.out.printf("%b%n", b==a);
System.out.printf("%b%n", a==a);
System.out.printf("%b%n", b==b);
System.out.printf("%b%n", a.equals(b));
System.out.printf("%b%n", b.equals(a));

January 17, 2017

COMP1000 Review

36

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Complex Boolean Expressions
• Logical AND

• Logical OR

January 17, 2017

COMP1000 Review

37

a b a && b

false false false

false true false

true false false

true true true

a b a || b

false false false

false true true

true false true

true true true

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup

a b c ((a && !b) || (!a && b)) && !c

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true

January 17, 2017

COMP1000 Review

38

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

39

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays
• An array is a fixed-size list of variables of

the same type, that represents a set of
related values

• Access many values via a single variable
name

• There is special syntax to create an array
and to use its elements

January 17, 2017

COMP1000 Review

40

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Declaring an Array
Similar syntax to other variables, but type is
now TYPE[]

TYPE[] name;

Examples…
int[] counts;
double[] costs;
boolean[] tf;
String[] names;

January 17, 2017

COMP1000 Review

41

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Initializing an Array
• Must set the size of the array at

initialization, but options to set initial
element values

• First option: set all to 0/false/null via
new (remember, arrays are objects!)…
int[] counts = new int[5];
double[] costs = new int[4];
boolean[] tf = new boolean[2];
String[] names = new String[3];

January 17, 2017

COMP1000 Review

42

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Initialize an Array with Size/Values
• If at same time as declaration…

int[] counts = {1, 2, 3, 4, 5};
double[] costs = {1.1, 2.2, 3.3, 4.4};
boolean[] tf = {false, true};
String[] names = {"foo", "bar", "baz"};

• If later…
boolean[] tf;
…
tf = new boolean[] {false, true};

January 17, 2017

COMP1000 Review

43

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Array Size
• Once initialized, the array has a fixed size

available via a member variable: length

• Example…
int[] counts = new int[5];
boolean[] tf = {false, true};

System.out.printf("%d %d%n",
counts.length, tf.length);

January 17, 2017

COMP1000 Review

44

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Accessing Array Elements
• Every element within the array has an “index” (think address,

relative to the beginning of the array): 0 – array.length-1

• After initialization, access an individual element using any
expression that resolves to an integer within brackets

array[index expression] = value;
var = array[index expression] * 2;
System.out.printf("%d%n",

array[index expression]);

• Bad index raises ArrayIndexOutOfBoundsException

int[] a = {5, 4, 3, 2, 1};
System.out.printf("%d", a[a.length]);

January 17, 2017

COMP1000 Review

45

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup

int[] a = {5, 4, 3, 2, 1};
int x = 2;

System.out.printf("%d %d %d %d %d",
a[3], a[x], a[x/2],
a[x+x], a[x-2]);

January 17, 2017

COMP1000 Review

46

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays in Memory
Arrays are stored in memory so that all the
elements are sequential, in order:

int[] counts;
counts = new int[8];
counts[3] = 10;

January 17, 2017

COMP1000 Review

47

0
address

0
0
10
0
0
0
0

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036

value variable

…

counts[0]
counts[1]
counts[2]
counts[3]
counts[4]
counts[5]
counts[6]
counts[7]

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Arrays of … Arrays (Twist!)
• Same concept, but the data type of each

array element is itself an array

• Example:
1 2
3 4
5 6

int[][] m = {{1, 2}, {3, 4}, {5, 6}};
System.out.printf("%d%n",m[2][0]);

January 17, 2017

COMP1000 Review

48

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Multidimensional Arrays
int[][] m;
m = new int[][] {{1, 2}, {3, 4}, {5, 6}};

int[][] m = new int[3][];
m[0] = new int[] {1, 2};
m[1] = new int[] {3, 4};
m[2] = new int[] {5, 6};

int[][] m = new int[3][2];
m[0][0] = 1;
m[0][1] = 2;
m[1][0] = 3;
m[1][1] = 4;
m[2][0] = 5;
m[2][1] = 6;

January 17, 2017

COMP1000 Review

49

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

50

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Sequential Execution
• Control flow is the order in which program

statements are executed

• Remember: the program starts at main()
and executes line-by-line till either
System.exit() or end of main()

• However, some commands cause the
execution to “hop” somewhere else
– Conditionals, loops, exceptions

January 17, 2017

COMP1000 Review

51

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Conditional Statements
if (B_EXPR_A) {

// a
} else if (B_EXPR_B) {

// b
} else if (B_EXPR_C) {

// c
} else {

// d
}
// e

• Starts with if
– Execute a only if

B_EXPR_A==true
– Then e

• Any number of else if
– Tested only if

B_EXPR_A==false
– Sequentially tested:

• b if B_EXPR_B==true
• c if B_EXPR_B==false &&

B_EXPR_C==true

• Optional else
– Only if prior B_EXPR_* all

false
– Cannot have a condition

January 17, 2017

COMP1000 Review

52

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Why is this strange?
if (a == true) {

…

}

if (a) {
…

}

January 17, 2017

COMP1000 Review

53

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup
int x = 5;
if (x=5) {

System.out.printf("foo");
}

January 17, 2017

COMP1000 Review

54

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Assignment Operator
The assignment operator (=) returns the
assigned value

int x = 5;
System.out.printf("%b%n", x==5); // true
System.out.printf("%b%n", x==7); // false
System.out.printf("%d%n", x=5); // 5
System.out.printf("%d%n", x=7); // 7

January 17, 2017

COMP1000 Review

55

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup
boolean x = false;
if (x=false) {

System.out.printf("foo");
}
if (x=true) {

System.out.printf("bar");
}

January 17, 2017

COMP1000 Review

56

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

?: Operator (Ternary)
Shortcut to an “if-else” expression

(condition)?(result if true):(result if false)

January 17, 2017

COMP1000 Review

57

int x=10, y;
if (x%2 == 0) {

y = 1;
} else {

y = 0;
}
System.out.printf("%d%n", y);

int x=10, y;
y = (x % 2 == 0)?1:0;
System.out.printf("%d%n", y);

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

while Loops
while loops are used to repeat a set of
statements while some condition is true

int x = 1, y = 1;
while (x<100) {

x *= 2;
y++;

}
System.out.printf("%d %d", x, y);

January 17, 2017

COMP1000 Review

58

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

do-while Loops
• A while loop body might be executed zero times if the

condition is never true
• If you need to always execute the body at least once,

use a do-while loop (remember the final ;)

int x;
Scanner s = new Scanner(System.in);
do {

System.out.printf("Enter 1 to loop: ");
x = s.nextInt();

} while (x == 1);
System.out.printf("Freedom!%n");

January 17, 2017

COMP1000 Review

59

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

for Loops
Used as a shortcut for a commonly
occurring pattern

– Initialization (once before loop)
– Condition (before each iteration)
– Update (at the end of each loop body)

January 17, 2017

COMP1000 Review

60

int i=0;
while (i<10) {

System.out.printf("%d%n", i);
i++;

}

for (int i=0; i<10; i++) {
System.out.printf("%d%n", i);

}

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

for-each Loop
• Shortcut to iterate over all elements of some

“iterable collection” (more later!)
• Common in many languages, added as of

JDK5

int[] phone = {8, 6, 7, 5, 3, 0, 9};

for (int x : phone) {
System.out.printf("%d", x);

}
System.out.printf(" Jenny%n");

January 17, 2017

COMP1000 Review

61

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Truth Table Example
boolean[] tf = {false, true};
for (boolean a : tf) {

for (boolean b : tf) {
for (boolean c : tf) {

System.out.printf(
"%-5s | %-5s | %-5s | %-5s%n",
a, b, c,
((a && !b) || (!a && b)) && !c);

}
}

}

January 17, 2017

COMP1000 Review

62

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Breaking a Loop
• The break statement allows you to

terminate a loop early
– Immediately ends the inner-most loop in

which it is found (like return for loops)

• When used well, typically improves
efficiency by reducing the number of
unnecessary iterations (e.g. when
something is found early in an array)

January 17, 2017

COMP1000 Review

63

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example (try with/without break)
final int[] haystack = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
final int needle = 2;

boolean found = false;
int i = 0;

for (i=0; i<haystack.length; i++) {
if (haystack[i]==needle) {

found = true;
break;

}
}

System.out.printf("found: %b, loop iterations: %d%n",
found, i);

January 17, 2017

COMP1000 Review

64

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

65

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Methods
• Programs can be logically broken down into a

set of tasks

• Individual tasks can be separated out from
the main program into methods

• A method is simply a mini-program that
completes a specific task

• Great for avoiding mistakes from writing the
same code in multiple places in the program

January 17, 2017

COMP1000 Review

66

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Method Pieces
public static int smallerOf(int a, int b) {

return (a<=b)?a:b;
}

Every method has…
– A name

• Multiple can have the same (“overloading”) as long as
something about parameter list is changed (type, number)

– A return type (or void)
– A parameter list (any number of [type name],)
– Visibility (public, private, protected)

• None = package protected (more later)
– Membership (static vs. member)

• Owned by the class (static) or each object

January 17, 2017

COMP1000 Review

67

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Invocation (“Calling”)
• Static:

– ClassName.methodName([arg1, arg2, …])
– methodName() if in same class (laziness!)

• Member:
– objName.methodName([arg1, arg2, …])

• Execution stops, hops to method, goes
back to line when hit end of method or first
use of return (there might be multiple)
– Even void methods can use return;

January 17, 2017

COMP1000 Review

68

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public class Bar {

public static int smallerOf(int a, int b) {
return (a<=b)?a:b;

}

public static void main(String[] args) {
int a=1, b=2;
System.out.printf("%d %d %d%n", a, a, Bar.smallerOf(a, a));
System.out.printf("%d %d %d%n", b, b, smallerOf(b, b));
System.out.printf("%d %d %d%n", a, b, smallerOf(a, b));
System.out.printf("%d %d %d%n", b, a, smallerOf(b, a));

}
}

January 17, 2017

COMP1000 Review

69

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Parameter Handling
• When invoking a method, argument values

are copied to parameters

• Straightforward for primitive variables
– Means variables unchanged in invoking context

• Since object variables’ value is a reference
(think memory address), “copying” means
that method can in fact change the variable
permanently
– Includes arrays (which are actually objects)

January 17, 2017

COMP1000 Review

70

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup (1)
public static void change(int a) {

a--;
}

public static void main(String[] args) {
int x = 10;
System.out.printf("before: %d", x);
change(x);
System.out.printf(", after: %d%n", x);

}

January 17, 2017

COMP1000 Review

71

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup (2)
public static void change(int[] a) {

a[0]--;
}

public static void main(String[] args) {
int[] x = {10};
System.out.printf("before: %d", x[0]);
change(x);
System.out.printf(", after: %d%n", x[0]);

}

January 17, 2017

COMP1000 Review

72

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Class Constants
• Every variable has a “scope”

– Where it can be accessed

• Defined by where it is declared
– From that point to the } of the closest { before

• To have a value accessible in multiple
methods within the class, use a variable with
class-level scope (declared outside any
method)
– In most cases it is a dangerous practice to have a

variable with class-level scope that is mutable

January 17, 2017

COMP1000 Review

73

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public static final double DOLLARS_PER_EURO = 1.05;

public static double dollarsToEuros(double dollars) {
return dollars / DOLLARS_PER_EURO;

}

public static double eurosToDollars(double euros) {
return euros * DOLLARS_PER_EURO;

}

public static void main(String[] args) {
System.out.printf("1 dollar is %.2f euros%n", dollarsToEuros(1));
System.out.printf("1 euro is %.2f dollars%n", eurosToDollars(1));

}

January 17, 2017

COMP1000 Review

74

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

A Note on main
• The main method is just like any other

• The parameter is an array of strings, which
are any command-line arguments supplied to
the program when it is run by the JVM
– Click the “Run” menu -> “Run Configurations”
– Find your application on the left list under “Java

Application”
– Click the “Arguments” tab on the right
– Type some values, separated by spaces, into the

“Program arguments” box

January 17, 2017

COMP1000 Review

75

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public class ClassExamples {

public static void main(String[] args) {
System.out.printf("%d:", args.length);
for (String arg : args) {

System.out.printf(" %s", arg);
}

}
}

January 17, 2017

COMP1000 Review

76

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Checkup
Write a method that searches a supplied
array (of integers) for a supplied integer
value. If found, return the index of the value;
else, -1 (why?).

January 17, 2017

COMP1000 Review

77

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Answer
public static int searchArray(int[] haystack, int needle) {

for (int i=0; i<haystack.length; i++) {
if (haystack[i] == needle) {

return i;
}

}
return -1;

}

January 17, 2017

COMP1000 Review

78

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions , File I/O
• Misc

January 17, 2017

COMP1000 Review

79

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exceptions
Programmatic mechanism to handle errors
that occur during execution of the program
(runtime)

Verbs…
Throw: when an error occurs, code throws a
new instance of an Exception class
Catch: code that knows how to handle a
particular type catches an exception to handle it

January 17, 2017

COMP1000 Review

80

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Exception Mechanics
• When an exception is thrown, execution

sequentially pops out of each scope until
either code catches it, or the program
ends

• Programmers use try-catch blocks to
handle potential runtime errors within a
section of code

January 17, 2017

COMP1000 Review

81

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

try-catch
try {

STATEMENTS THAT MIGHT THROW EXCEPTIONS
} catch (EXCEPTION_TYPE1 EXCEPTION_VARIABLE1) {

STATEMENTS THAT HANDLE EXCEPTION_TYPE1
} catch (EXCEPTION_TYPE2 EXCEPTION_VARIABLE2) {

STATEMENTS THAT HANDLE EXCEPTION_TYPE2
}
…

January 17, 2017

COMP1000 Review

82

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
Scanner input = new Scanner(System.in);
int inputValue = 0;

try {
System.out.printf("Enter an integer: ");
inputValue = input.nextInt();

} catch (InputMismatchException ex) {
System.out.printf("Error! Integer required!%n");
System.exit(0);

}

System.out.printf("%d^2=%d%n",
inputValue, inputValue*inputValue);

January 17, 2017

COMP1000 Review

83

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Passing the Buck
If a method programmer opts not to catch
exception(s), these should be listed in the
method signature via the throws keyword

public static int readInt(Scanner s) throws InputMismatchException {
System.out.print("Enter an integer: ");
return s.nextInt();

}

January 17, 2017

COMP1000 Review

84

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public static void doSomethingBad() throws IOException
{

throw new IOException("Oops");
}

public static void main(String[] args) {
try {

doSomethingBad();
System.out.printf("Yay :)%n");

} catch (IOException e) {
System.out.printf("%s :(%n", e.getMessage());

}
}

January 17, 2017

COMP1000 Review

85

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

I/O
• I/O stands for Input/Output

• So far, we've used a Scanner object based
on System.in for all terminal input (usually
user's keyboard) and System.out for all
terminal output

• System.in and System.out are predefined
I/O objects that are available automatically in
every Java program

January 17, 2017

COMP1000 Review

86

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Files
• Files are useful to store large data sets for a

program and/or to save the need to type in all
the input data values individually

• Accessed via File objects
File f = new File("path");
– Paths default to current directory, unless absolute

(prefixed with c:/ or /) are given

• For basic cases, we use Scanner objects for
file input and PrintWriter objects for output

January 17, 2017

COMP1000 Review

87

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Issues with Files
• When opening files, Java forces you to

handle the situation of a file not being found
via FileNotFoundException

• When you are done, you should close the file
– make sure this happens no matter what!

• To handle both these issues, we use the
try-with-resource block in this class

January 17, 2017

COMP1000 Review

88

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example File Input
try (Scanner fin = new Scanner(new File("test.txt"))) {

while (fin.hasNextLine()) {
String nextLine = fin.nextLine();
System.out.printf(nextLine+"%n");

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}

January 17, 2017

COMP1000 Review

89

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example File Output
try (PrintWriter fout = new PrintWriter(new File("numbers.txt"))) {

for (int i=1; i<=100; i++) {
fout.printf("%d%n", i);

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}

January 17, 2017

COMP1000 Review

90

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example File Input/Output
try (

Scanner fin = new Scanner(new File("numbers.txt"));
PrintWriter fout = new PrintWriter(new File("odds.txt"));

) {
while (fin.hasNextInt()) {

int next = fin.nextInt();
if (next % 2 == 1) {

fout.printf("%d%n", next);
}

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}

January 17, 2017

COMP1000 Review

91

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc

January 17, 2017

COMP1000 Review

92

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Random Numbers
• Computers can’t really come up with random

numbers, but there are sophisticated algorithms
(pseudo-random generators, RNGs) to make
numbers that appear so via the Random object

• If the same “seed” is used, the object will produce
the same sequence

Random rng1 = new Random();
Random rng2 = new Random(123);
System.out.printf("%d %d%n", rng1.nextInt(), rng2.nextInt());
System.out.printf("%d %d%n", rng1.nextInt(), rng2.nextInt());

January 17, 2017

COMP1000 Review

93

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Example
public static void main(String[] args) {

Scanner s = new Scanner(System.in);

System.out.printf("File: ");
String fname = s.nextLine();

long seed = 0;
boolean achieved = false;
do {

try {
System.out.printf("Seed: ");
seed = s.nextLong();
achieved = true;

} catch (InputMismatchException e) {
System.out.printf(">:(%n");
s.nextLine();

}
} while (!achieved);

write(fname, seed, 100);
}

public static void write(String fname, long seed, int n) {
try (PrintWriter f = new PrintWriter(new File(fname))) {

Random rng = new Random(seed);
for (int i=0; i<n; i++) {

f.printf("%d%n", rng.nextInt(10));
}

} catch (FileNotFoundException e) {
System.out.printf("File not found!%n");

}
}

January 17, 2017

COMP1000 Review

94

Wentworth Institute of Technology COMP1050 – Computer Science II | Spring 2017 | Derbinsky

Take Home Points
• If all of this made sense, you are ready for

COMP1050
– Note: most OOP content was ignored – that’s

this class!

• If you had troubles, the complete set of
COMP1000 slides are on Blackboard,
including exercises for you to try
– Also feel free to talk with me!

January 17, 2017

COMP1000 Review

95

