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What Makes Up a Computer?
• Hardware

– Physical components
– Wide variety of types and manufacturers
– Abstracted to a simple set of ideas for 

Computer Science

• Software
– Programs (i.e., instructions)
– Wide variety of purposes
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High Level Hardware View
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Main Memory (RAM)
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…

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

01110011

01110100

01100001

01110111

01110010

01100001

01110011

01110010

Addresses

4 bytes at 
address 0

2 bytes at 
address 4

2 bytes at 
address 6
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Running a Program
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Memory (RAM)
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Data/Input Output
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understand	Java	

directly
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Program
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Compilers

Java 
Compiler

Java Source Code

class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}
}

Byte Code

01111010000101010100
10001101000110100011
11100101010100101001
10001010110001010000
01110101010111000110
01100100001001101010
10101001000011110001
11000000011110100010
1010101010010001110…
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Java Virtual Machine
• Java byte code also can't be executed by 

a CPU directly
• Instead, the Java Virtual Machine (JVM) is 

another program that interprets the byte 
code and translates it into the native CPU 
language
– Allows a program to be compiled once and 

run on all types of computers (that have a 
JVM available and installed)

• Other high level languages work differently
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Running a Java Program

Processor (CPU)

Memory (RAM)
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Program 
Input
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Output
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Variables
• Each variable has a name that the 

programmer uses to access and modify 
that variable's value

• Each variable holds exactly one value that 
is stored in a particular memory location

• Over time, as a program executes, the 
value of a variable can change
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Variable Names
• In Java, variable names:

– Must start with either a letter (uppercase or 
lowercase) or an underscore

– Must contain only letters, digits, and 
underscores

– Are case sensitive

• Examples:  count, x, user_input2
• Invalid names: 42, 5x, #yolo, file.cpp, a-b
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Variable Declaration
• Every variable must be declared before you can 

use it in your program

• Syntax: TYPE NAME;
– The type comes first, then then variable name, 

followed by a semicolon

• Examples:
int count;
int num_vals;
double average;
char first_initial;

January 17, 2017

COMP1000 Review

15



Wentworth Institute of Technology COMP1050 – Computer Science II    | Spring 2017    | Derbinsky

Data Types
• There are 8 “primitive” data types in Java

byte, short, int, long, float, 
double, boolean, char

• These are all built-in types – all others hold 
“references” (think memory address) of an 
instance of some class (i.e. in object)
– Whereas the values of primitives are themselves 

useful as data (e.g. true, 8, ‘a’), these hold 
addresses to data that is actually elsewhere
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Data Types (1)
• int

– Integer, whole numbers; 4 bytes
– Examples: 0, 15, -100464, 420712003, -1
– Range: -231 (-2147483648) to 231-1 (2147483647)

• double
– Numbers with fractional component (15-digit prec); 8 bytes
– Examples: 11.23, -959.75, 0.5, -1.0
– Range: ~10-308 to ~10308, positive or negative

• boolean
– Only values: true, false; at least 1 byte
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Data Types (2)
• char

– Single character or symbol; 2 bytes
– Examples: 'a', 'C', '3', '.', '$'
– Actually numeric codes referring to the ASCII 

table (http://asciitable.com)
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Data Types (3)
• String

– A sequence of characters and/or symbols
– Examples: "Hello World", "475!", "a", "$”
– Non-primitive (how do we know?)

• Useful: length(), charAt(), equals(), …
• Concatenation: String + String
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Literals
• When you type a variable value in source 

code, this is referred to as a “literal” – the 
representation of a fixed value

• The way you write the literal implicitly 
indicates its data type
double: decimal (3.14), sci. not. (6.02e23)
char: single quotes ('a')
String: double quotes ("hello")
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Mixing Types
• In general, avoid or be careful

• Integers and characters interchange via the ASCII 
table codes

• Casting: operation that converts a value of one 
data type to another
– Syntax: (type) value
– Narrowing: larger -> smaller range

int x = (int) 1.7; // 1
– Widening: smaller -> larger

double y = (double) 1 / 2; // 0.5
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Variable Initialization
• Before you use a variable, it MUST have a value

• You can initialize a variable when you declare it or 
you can do so afterwards
– Syntax after declaration: NAME = VALUE;
– Syntax during declaration: TYPE NAME = VALUE;

• Examples
count = 0;
ultimate_answer = 42;
int num_vals = 10;
double pi = 3.14159;
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Mutability
• A variable that can change its value is 

mutable

• A variable that cannot is called immutable or 
a constant

• Use the final keyword to create a constant -
the compiler will ensure it receives exactly 
one value
– By convention, use all caps for the name (e.g. 
Math.PI)
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The Value null
• For any non-primitive, the null value says 

that it points to an invalid/non-existent 
object (think: bad memory address)

• This is the default value in some 
circumstances (e.g. member variable, 
array value)
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Terminal Input
• Java doesn't (easily) allow reading directly 

from System.in

• Instead, you use a Scanner object that 
handles reading the input and ensures that 
the type of data you read matches what 
you want
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Using a Scanner
• Declare and initialize a Scanner object

Scanner s = new Scanner(System.in);
– One per program!
– Requires import java.util.Scanner;

• Call methods on the Scanner object to read 
different types of values from the terminal
int var = s.nextInt();
double var = s.nextDouble();
String var = s.next();
String var = s.nextLine(); // whole line

• Careful mixing with others due to whitespace handling

January 17, 2017

COMP1000 Review

26



Wentworth Institute of Technology COMP1050 – Computer Science II    | Spring 2017    | Derbinsky

Terminal Output
• You should get into the habit of using 

formatted printing by default
System.out.printf("format", arg1, arg2, …);
String s = String.format("format", arg1, arg2, …);

• % in the format string followed by a 
converter, with optional flag(s) in between
– Aside from new line, expects corresponding 

argument (1st % -> 1st arg, 2nd -> 2nd, …)
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Common Converters/Flags
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Converter Flag Description

d An integer

f A float (includes double)

s A String

b A Boolean

n New line

+ Includes the sign (positive or negative)

, Includes grouping characters

.3 Three places after the decimal.
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Quick Check
What is the output to the terminal when the 
following code is run?

String a = String.format("W%sT", "I");
String b = String.format("%d2%d", "!".length(), a.length());
System.out.printf("%s %s%n%.2f!%n", a, b, 3.14159);
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COMP1000 Topics
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• Misc
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Operator Precedence

( ) parentheses

*, /, % multiplication, division, mod

+, - addition, subtraction

= assignment

For binary operators, if both operands are int
values, then the result is an int value; else double
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Evaluated
First

Evaluated
Last
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Quick Check: x=?
• int x = 5/2;
• double x = 5/2; 
• int x = 5.0/2; 
• double x = 5.0/2; 
• int x = 5/4*4; 
• int x = 5/(4*4); 
• double x = 5/4*4.0; 
• int x = 5.0/4*8;
• double y = 5;

double x = 1+y*(y/2);  

• 2
• 2.0
• Error!
• 2.5
• 4
• 0
• 4.0
• Error!

• 13.5
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More Operators
• x += a; // x = x + a

– Also: -= *= /=

• x++; // x = x + 1
– Also: --
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Math Class
Remember useful static methods available 
via the Math class

Math.sqrt(double)
Math.pow(double, double)
Math.abs(double)
Math.log(double)
Math.log10(double)
…
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Boolean Expression
An expression that evaluates to a true or false

Comparison operators, returns true if…

!a (a is false)
a == b (a is equal to b)
a != b (a is not equal to b)
a < b (a is less than b)
a <= b (a is less than or equal to b)
a > b (a is greater than b)
a >= b (a is greater than or equal to b)
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Equality Gotcha
• Remember, equality only works for constant values/primitive 

variables – not objects!
• Object variables hold a reference (think memory address), so 

equality is asking if they are actually the same object

String a = "WIT";
String b = "wit".toUpperCase();
System.out.printf("%b%n", a==b);
System.out.printf("%b%n", b==a);
System.out.printf("%b%n", a==a);
System.out.printf("%b%n", b==b);
System.out.printf("%b%n", a.equals(b));
System.out.printf("%b%n", b.equals(a));
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Complex Boolean Expressions
• Logical AND

• Logical OR
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a b a && b

false false false

false true false

true false false

true true true

a b a || b

false false false

false true true

true false true

true true true
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Checkup

a b c ((a && !b) || (!a && b)) && !c

false false false

false false true

false true false

false true true

true false false

true false true

true true false

true true true
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Arrays
• An array is a fixed-size list of variables of 

the same type, that represents a set of 
related values

• Access many values via a single variable 
name

• There is special syntax to create an array 
and to use its elements
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Declaring an Array
Similar syntax to other variables, but type is 
now TYPE[]

TYPE[] name;

Examples…
int[] counts;
double[] costs;
boolean[] tf;
String[] names;
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Initializing an Array
• Must set the size of the array at 

initialization, but options to set initial 
element values 

• First option: set all to 0/false/null via 
new (remember, arrays are objects!)…
int[] counts = new int[5];
double[] costs = new int[4];
boolean[] tf = new boolean[2];
String[] names = new String[3];
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Initialize an Array with Size/Values 
• If at same time as declaration…

int[] counts = {1, 2, 3, 4, 5};
double[] costs = {1.1, 2.2, 3.3, 4.4};
boolean[] tf = {false, true};
String[] names = {"foo", "bar", "baz"};

• If later…
boolean[] tf;
…
tf = new boolean[] {false, true};
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Array Size
• Once initialized, the array has a fixed size 

available via a member variable: length

• Example…
int[] counts = new int[5];
boolean[] tf = {false, true};

System.out.printf("%d %d%n", 
counts.length, tf.length);
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Accessing Array Elements
• Every element within the array has an “index” (think address, 

relative to the beginning of the array): 0 – array.length-1

• After initialization, access an individual element using any 
expression that resolves to an integer within brackets

array[index expression] = value;
var = array[index expression] * 2;
System.out.printf("%d%n", 

array[index expression]);

• Bad index raises ArrayIndexOutOfBoundsException

int[] a = {5, 4, 3, 2, 1};
System.out.printf("%d", a[a.length]);
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Checkup

int[] a = {5, 4, 3, 2, 1};
int x = 2;

System.out.printf("%d %d %d %d %d",
a[3], a[x], a[x/2], 
a[x+x], a[x-2]);
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Arrays in Memory
Arrays are stored in memory so that all the 
elements are sequential, in order:

int[] counts;
counts = new int[8];
counts[3] = 10;
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0
address

0
0
10
0
0
0
0

1000
1004
1008
1012
1016
1020
1024
1028
1032
1036

value variable

…

counts[0]
counts[1]
counts[2]
counts[3]
counts[4]
counts[5]
counts[6]
counts[7]
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Arrays of … Arrays (Twist!)
• Same concept, but the data type of each 

array element is itself an array

• Example: 
1 2
3 4
5 6

int[][] m = {{1, 2}, {3, 4}, {5, 6}};
System.out.printf("%d%n",m[2][0]);
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Multidimensional Arrays
int[][] m;
m = new int[][] {{1, 2}, {3, 4}, {5, 6}};

int[][] m = new int[3][];
m[0] = new int[] {1, 2};
m[1] = new int[] {3, 4};
m[2] = new int[] {5, 6};

int[][] m = new int[3][2];
m[0][0] = 1;
m[0][1] = 2;
m[1][0] = 3;
m[1][1] = 4;
m[2][0] = 5;
m[2][1] = 6;
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COMP1000 Topics
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• Control Flow, Conditionals, Loops
• Methods
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Sequential Execution
• Control flow is the order in which program 

statements are executed

• Remember: the program starts at main()
and executes line-by-line till either 
System.exit() or end of main()

• However, some commands cause the 
execution to “hop” somewhere else
– Conditionals, loops, exceptions
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Conditional Statements
if (B_EXPR_A) {

// a
} else if (B_EXPR_B) {

// b
} else if (B_EXPR_C) {

// c
} else {

// d
}
// e

• Starts with if
– Execute a only if 

B_EXPR_A==true
– Then e

• Any number of else if
– Tested only if 

B_EXPR_A==false
– Sequentially tested: 

• b if B_EXPR_B==true
• c if B_EXPR_B==false && 

B_EXPR_C==true

• Optional else
– Only if prior B_EXPR_* all 

false
– Cannot have a condition
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Why is this strange?
if (a == true) {

…

}

if (a) {
…

}
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Checkup
int x = 5;
if (x=5) {

System.out.printf("foo");
}

January 17, 2017

COMP1000 Review

54



Wentworth Institute of Technology COMP1050 – Computer Science II    | Spring 2017    | Derbinsky

Assignment Operator
The assignment operator (=) returns the 
assigned value

int x = 5;
System.out.printf("%b%n", x==5); // true
System.out.printf("%b%n", x==7); // false
System.out.printf("%d%n", x=5); // 5
System.out.printf("%d%n", x=7); // 7
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Checkup
boolean x = false;
if (x=false) {

System.out.printf("foo");
}
if (x=true) {

System.out.printf("bar");
}
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?: Operator (Ternary)
Shortcut to an “if-else” expression

(condition)?(result if true):(result if false)
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int x=10, y;
if (x%2 == 0) {

y = 1;
} else {

y = 0;
}
System.out.printf("%d%n", y);

int x=10, y;
y = (x % 2 == 0)?1:0;
System.out.printf("%d%n", y);
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while Loops
while loops are used to repeat a set of 
statements while some condition is true

int x = 1, y = 1;
while (x<100) {

x *= 2;
y++;

}
System.out.printf("%d %d", x, y);
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do-while Loops
• A while loop body might be executed zero times if the 

condition is never true
• If you need to always execute the body at least once, 

use a do-while loop (remember the final ;)

int x;
Scanner s = new Scanner(System.in);
do {

System.out.printf("Enter 1 to loop: ");
x = s.nextInt(); 

} while (x == 1);
System.out.printf("Freedom!%n");
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for Loops
Used as a shortcut for a commonly 
occurring pattern

– Initialization (once before loop)
– Condition (before each iteration)
– Update (at the end of each loop body)
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int i=0;
while (i<10) {

System.out.printf("%d%n", i);
i++;

}

for (int i=0; i<10; i++) {
System.out.printf("%d%n", i);

}
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for-each Loop
• Shortcut to iterate over all elements of some 

“iterable collection” (more later!)
• Common in many languages, added as of 

JDK5

int[] phone = {8, 6, 7, 5, 3, 0, 9};

for (int x : phone) {
System.out.printf("%d", x);

}
System.out.printf(" Jenny%n");
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Truth Table Example
boolean[] tf = {false, true};
for (boolean a : tf) {

for (boolean b : tf) {
for (boolean c : tf) {

System.out.printf(
"%-5s | %-5s | %-5s | %-5s%n", 
a, b, c, 
((a && !b) || (!a && b)) && !c);

}
}

}
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Breaking a Loop
• The break statement allows you to 

terminate a loop early
– Immediately ends the inner-most loop in 

which it is found (like return for loops)

• When used well, typically improves 
efficiency by reducing the number of 
unnecessary iterations (e.g. when 
something is found early in an array)
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Example (try with/without break)
final int[] haystack = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
final int needle = 2;

boolean found = false;
int i = 0;

for (i=0; i<haystack.length; i++) {
if (haystack[i]==needle) {

found = true;
break;

}
}

System.out.printf("found: %b, loop iterations: %d%n", 
found, i);
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COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc
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Methods
• Programs can be logically broken down into a 

set of tasks

• Individual tasks can be separated out from 
the main program into methods

• A method is simply a mini-program that 
completes a specific task

• Great for avoiding mistakes from writing the 
same code in multiple places in the program
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Method Pieces
public static int smallerOf(int a, int b) {

return (a<=b)?a:b;
}

Every method has…
– A name

• Multiple can have the same (“overloading”) as long as 
something about parameter list is changed (type, number)

– A return type (or void)
– A parameter list (any number of [type name],)
– Visibility (public, private, protected)

• None = package protected (more later)
– Membership (static vs. member)

• Owned by the class (static) or each object
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Invocation (“Calling”)
• Static: 

– ClassName.methodName([arg1, arg2, …])
– methodName() if in same class (laziness!)

• Member:
– objName.methodName([arg1, arg2, …])

• Execution stops, hops to method, goes 
back to line when hit end of method or first 
use of return (there might be multiple)
– Even void methods can use return;
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Example
public class Bar {

public static int smallerOf(int a, int b) {
return (a<=b)?a:b;

}

public static void main(String[] args) {
int a=1, b=2;
System.out.printf("%d %d %d%n", a, a, Bar.smallerOf(a, a));
System.out.printf("%d %d %d%n", b, b, smallerOf(b, b));
System.out.printf("%d %d %d%n", a, b, smallerOf(a, b));
System.out.printf("%d %d %d%n", b, a, smallerOf(b, a));

}
}
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Parameter Handling
• When invoking a method, argument values 

are copied to parameters

• Straightforward for primitive variables
– Means variables unchanged in invoking context

• Since object variables’ value is a reference 
(think memory address), “copying” means 
that method can in fact change the variable 
permanently
– Includes arrays (which are actually objects)
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Checkup (1)
public static void change(int a) {

a--;
}

public static void main(String[] args) {
int x = 10;
System.out.printf("before: %d", x);
change(x);
System.out.printf(", after: %d%n", x);

}
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Checkup (2)
public static void change(int[] a) {

a[0]--;
}

public static void main(String[] args) {
int[] x = {10};
System.out.printf("before: %d", x[0]);
change(x);
System.out.printf(", after: %d%n", x[0]);

}
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Class Constants
• Every variable has a “scope”

– Where it can be accessed

• Defined by where it is declared
– From that point to the } of the closest { before

• To have a value accessible in multiple 
methods within the class, use a variable with 
class-level scope (declared outside any 
method)
– In most cases it is a dangerous practice to have a 

variable with class-level scope that is mutable
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Example
public static final double DOLLARS_PER_EURO = 1.05;

public static double dollarsToEuros(double dollars) {
return dollars / DOLLARS_PER_EURO;

}

public static double eurosToDollars(double euros) {
return euros * DOLLARS_PER_EURO;

}

public static void main(String[] args) {
System.out.printf("1 dollar is %.2f euros%n", dollarsToEuros(1));
System.out.printf("1 euro is %.2f dollars%n", eurosToDollars(1));

}
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A Note on main
• The main method is just like any other

• The parameter is an array of strings, which 
are any command-line arguments supplied to 
the program when it is run by the JVM
– Click the “Run” menu -> “Run Configurations”
– Find your application on the left list under “Java 

Application”
– Click the “Arguments” tab on the right
– Type some values, separated by spaces, into the 

“Program arguments” box
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Example
public class ClassExamples {

public static void main(String[] args) {
System.out.printf("%d:", args.length);
for (String arg : args) {

System.out.printf(" %s", arg);
} 

}
}
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Checkup
Write a method that searches a supplied 
array (of integers) for a supplied integer 
value. If found, return the index of the value; 
else, -1 (why?).
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Answer
public static int searchArray(int[] haystack, int needle) {

for (int i=0; i<haystack.length; i++) {
if (haystack[i] == needle) {

return i;
}

}
return -1;

}
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COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions , File I/O
• Misc

January 17, 2017

COMP1000 Review

79



Wentworth Institute of Technology COMP1050 – Computer Science II    | Spring 2017    | Derbinsky

Exceptions
Programmatic mechanism to handle errors 
that occur during execution of the program 
(runtime)

Verbs…
Throw: when an error occurs, code throws a 
new instance of an Exception class
Catch: code that knows how to handle a 
particular type catches an exception to handle it
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Exception Mechanics
• When an exception is thrown, execution 

sequentially pops out of each scope until 
either code catches it, or the program 
ends

• Programmers use try-catch blocks to 
handle potential runtime errors within a 
section of code
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try-catch
try {

STATEMENTS THAT MIGHT THROW EXCEPTIONS
} catch (EXCEPTION_TYPE1 EXCEPTION_VARIABLE1) {

STATEMENTS THAT HANDLE EXCEPTION_TYPE1
} catch (EXCEPTION_TYPE2 EXCEPTION_VARIABLE2) {

STATEMENTS THAT HANDLE EXCEPTION_TYPE2
}
…
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Example
Scanner input = new Scanner(System.in);
int inputValue = 0;

try {
System.out.printf("Enter an integer: ");
inputValue = input.nextInt();

} catch (InputMismatchException ex) {
System.out.printf("Error! Integer required!%n");
System.exit(0);

}

System.out.printf("%d^2=%d%n", 
inputValue, inputValue*inputValue);
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Passing the Buck
If a method programmer opts not to catch 
exception(s), these should be listed in the 
method signature via the throws keyword

public static int readInt(Scanner s) throws InputMismatchException {
System.out.print("Enter an integer: ");
return s.nextInt();

}
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Example
public static void doSomethingBad() throws IOException
{

throw new IOException("Oops");
}

public static void main(String[] args) {
try {

doSomethingBad();
System.out.printf("Yay :)%n");

} catch (IOException e) {
System.out.printf("%s :(%n", e.getMessage());

}
}
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I/O
• I/O stands for Input/Output

• So far, we've used a Scanner object based 
on System.in for all terminal input (usually 
user's keyboard) and System.out for all 
terminal output

• System.in and System.out are predefined 
I/O objects that are available automatically in 
every Java program
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Files
• Files are useful to store large data sets for a 

program and/or to save the need to type in all 
the input data values individually

• Accessed via File objects
File f = new File("path");
– Paths default to current directory, unless absolute 

(prefixed with c:/ or /) are given

• For basic cases, we use Scanner objects for 
file input and PrintWriter objects for output
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Issues with Files
• When opening files, Java forces you to 

handle the situation of a file not being found 
via FileNotFoundException

• When you are done, you should close the file 
– make sure this happens no matter what!

• To handle both these issues, we use the 
try-with-resource block in this class
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Example File Input
try (Scanner fin = new Scanner(new File("test.txt"))) {

while (fin.hasNextLine()) {
String nextLine = fin.nextLine();
System.out.printf(nextLine+"%n");

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}
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Example File Output
try (PrintWriter fout = new PrintWriter(new File("numbers.txt"))) {

for (int i=1; i<=100; i++) {
fout.printf("%d%n", i);

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}
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Example File Input/Output
try (

Scanner fin = new Scanner(new File("numbers.txt"));
PrintWriter fout = new PrintWriter(new File("odds.txt"));

) {
while (fin.hasNextInt()) {

int next = fin.nextInt();
if (next % 2 == 1) {

fout.printf("%d%n", next);
}

}
} catch (FileNotFoundException ex) {

System.out.printf("File not found!%n");
System.exit(0);

}
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COMP1000 Topics
• Computation/Programming
• Variables, I/O
• Expressions
• Arrays
• Control Flow, Conditionals, Loops
• Methods
• Exceptions, File I/O
• Misc
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Random Numbers
• Computers can’t really come up with random 

numbers, but there are sophisticated algorithms 
(pseudo-random generators, RNGs) to make 
numbers that appear so via the Random object

• If the same “seed” is used, the object will produce 
the same sequence

Random rng1 = new Random();
Random rng2 = new Random(123);
System.out.printf("%d %d%n", rng1.nextInt(), rng2.nextInt());
System.out.printf("%d %d%n", rng1.nextInt(), rng2.nextInt());
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Example
public static void main(String[] args) {

Scanner s = new Scanner(System.in);

System.out.printf("File: ");
String fname = s.nextLine();

long seed = 0;
boolean achieved = false;
do {

try {
System.out.printf("Seed: ");
seed = s.nextLong();
achieved = true;

} catch (InputMismatchException e) {
System.out.printf(">:(%n");
s.nextLine();

}
} while (!achieved);

write(fname, seed, 100);
}

public static void write(String fname, long seed, int n) {
try (PrintWriter f = new PrintWriter(new File(fname))) {

Random rng = new Random(seed);
for (int i=0; i<n; i++) {

f.printf("%d%n", rng.nextInt(10));
}

} catch (FileNotFoundException e) {
System.out.printf("File not found!%n");

}
}
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Take Home Points
• If all of this made sense, you are ready for 

COMP1050
– Note: most OOP content was ignored – that’s 

this class!

• If you had troubles, the complete set of 
COMP1000 slides are on Blackboard, 
including exercises for you to try
– Also feel free to talk with me!
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