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Outline
1. Bayes’ Rule
2. Learning via probability estimates
3. Feasibility via conditional independence
4. Estimating likelihoods

– Multinomial with smoothing
– Gaussian

5. Practical Issues
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Axiom of Conditional Probability

P (A,B) = P (A|B) · P (B)

= P (B|A) · P (A)
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Joint	Probability

Conditional	Probability
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Simple Example
• A = filled
• B = shape is square
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Bayes’ Rule
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P (A,B) = P (B,A)

P (A|B) · P (B) = P (B|A) · P (A)

P (A|B) =
P (B|A) · P (A)

P (B)

Posterior
Likelihood Prior

Evidence/Support
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Why Does Bayes’ Rule Matter?
Often we know/can estimate likelihood and prior 
information easier than the posterior

Clinical example
– A: person has cancer
– B: person smokes

Easy from historical data
– P(A) = 10%
– P(B) = 40%
– P(B|A) = 80%
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P (Hypothesis|Data) =
P (Data|Hypothesis) · P (Hypothesis)

P (Data)

P (A|B) = 20%
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Learning via Probability Estimates
• Consider the posterior probability distribution over a 

discrete set of classes (C) and fixed set of features (x; 
each continuous or discrete)

• The maximum a posteriori (MAP) decision rule says to 
select the class that maximizes the posterior, thus…
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P (Ck|x) =
P (Ck) · P (x|Ck)

P (x)

ŷ = argmax

k2{1...K}

P (Ck) · P (x|Ck)

P (x)
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Note
• The evidence term is only dependent on the data, and 

applies a normalizing constant (i.e. p’s sum to 1)

• For classification we care only about selecting the 
maximum value, and so we can maximize the 
numerator and ignore the denominator
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ŷ = argmax

k2{1...K}
P (Ck)P (x|Ck)

P (x) =
X

k

P (x, Ck)

=
X

k

P (x|Ck) · P (Ck)
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How Much Data is Necessary?

• We can reasonably estimate the class prior 
via data (e.g. 2 classes ~ 100 points)

• However, likelihood is exponential
– P({0,0,0…,0} | 0) x 100
– P({0,0,0…,0} | 1) x 100
– P({0,0,0…,1} | 0) x 100
– P({0,0,0…,1} | 1) x 100
...
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ŷ = argmax

k2{1...K}
P (Ck)P (x|Ck)
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Feasibility via Conditional Independence
• The term naïve refers to the algorithmic 

assumption that each feature is conditionally 
independent of every other feature
– This has the effect of reducing the necessary 

estimation data from exponential to linear

• In practice, while the independence 
assumption typically may not hold, Naïve 
Bayes works surprisingly well and is efficient 
for very large data sets with many features
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Conditional Independence
X is conditionally independent of Y given Z, 
if and only if the probability distribution 
governing X is independent of the value of Y 
given Z
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(8i, j, k)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)
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P (X,Y ) = P (X1, X2|Y )

= P (X1|X2, Y ) · P (X2|Y )

= P (X1|Y ) · P (X2|Y )

Deriving Naïve Bayes
Consider the two-feature example:

Now apply the conditional independence 
assumption…
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P (X,Y ) = P (X1, X2|Y )

= P (X1|X2, Y ) · P (X2|Y )
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More Generally…

where…
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P (X1, . . . , Xn|Ck) = P (X1|Ck) · P (X2, . . . , Xn|Ck, X1)

= P (X1|Ck) · P (X2|Ck, X1) · P (X3, . . . , Xn|Ck, X1, X2)

= . . .

P (Xi|Ck, Xj) = P (Xi|Ck)

P (Xi|Ck, Xj , Xq) = P (Xi|Ck)

P (Xi|Ck, Xj , Xq, . . .) = P (Xi|Ck)
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And so…

ŷ = argmax

k2{1...K}
P (Ck) · P (x|Ck)

= argmax

k2{1...K}
P (Ck) ·

nY

i=1

P (xi|Ck)
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Parameter Estimation – Prior
• Default approach

– (# examples of class) / (# examples)

• Could also assume equiprobable
– 1/(# distinct classes)
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Parameter Estimation - Likelihood
• For discrete feature values, can assume a 

multinomial distribution and use the 
maximum likelihood estimate (MLE)

• For continuous values, a common 
assumption is that for each discrete class 
label the distribution of each continuous 
feature is Gaussian
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Example
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Dataset Input
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Additive Smoothing
• An issue that arises in the calculation is 

what to do when evaluating a feature 
value you haven’t seen (e.g.     )

• To accommodate, use additive smoothing
– d = feature dimensionality
– α = smoothing parameter/strength (≥0)

• 0 = no smoothing
• <1 = Lidstone smoothing
• ≥1 = Laplace smoothing
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Example, Laplace Smoothing
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Dataset Input
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Gaussian MLE Estimate
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µ =
1

n

nX

i=1

xi

� =

vuut 1

n� 1

nX

i=1

(xi � µ)2

P (x) =
1p
2⇡�

e

� (x�µ)2

2�2

Humidity

Play	
Golf

yes 86	96	80	65	70	80	70	90	75

no 85	90	70	95	91

P (humidity = 74|play = yes) =
1p

2⇡(10.2)
e
� (74�79.1)2

2(10.2)2 = 0.0344

P (humidity = 74|play = no) =

1p
2⇡(9.7)

e
� (74�86.2)2

2(9.7)2
= 0.0187

Humidity	=	74

Mean Std.	Dev.

79.1 10.2

86.2 9.7
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Practical Issues
• When multiplying many small fractions 

together you may suffer from underflow, 
resulting in the computer rounding to 0

• To account for this, it is common to take 
the [natural] log of probabilities and sum 
them: log(a*b) = log(a) + log(b)
– Remember: all we care about is the argmax

for classification
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Checkup
• ML task(s)?

– Classification: binary/multi-class?
• Feature type(s)?
• Implicit/explicit?
• Parametric?
• Online?
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Summary: Naïve Bayes
• Practicality

– Easy, generally applicable
• May benefit from properly modeling the likelihoods

– Very popular

• Efficiency
– Training: relatively fast, batch
– Testing: typically very fast

• Assuming cached distributions [parameters]

• Performance
– Optimal in some situations, often very good (common 

for use in NLP, such as spam detection)
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