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Introduction to 
Machine Learning

Lecture 8

How can we develop systems that learn from 
examples?
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Agenda
• What is Machine Learning?
• Key Terminology
• Machine Learning Tasks
• Challenges/Issues
• Developing a Machine 

Learning Application
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What is Machine Learning (ML)?
The study/construction of algorithms that can 
learn from data

The study of algorithms that improve their 
performance P at some task T with experience E
– Tom Mitchell (CMU)

Fusion of algorithms, artificial intelligence, 
statistics, optimization theory, visualization, …
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Natural Language Processing (NLP)
Modern NLP algorithms 
are typically based on 
statistical ML

Applications
– Summarization
– Machine Translation
– Speech Processing
– Sentiment Analysis
…
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Computer Vision
Methods for acquiring, 
processing, analyzing, 
and understanding 
images

Applications
– Image search
– Facial recognition
– Object tracking
– Image restoration
…
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Games, Robotics, Medicine, Ads, … 

March 18, 2016

Introduction to Machine Learning

6



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Machine Learning is in Demand!

*glassdoor.com, National Avg as of March 16, 2016
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Position Salary*

Data	Scientist $113,436

Machine	 Learning	Engineer $114,826

Software	Engineer $95,195

“A	data	scientist	is	someone	who	knows	more	statistics	than	a	computer	
scientist	and	more	computer	 science	 than	a	statistician.”
– Josh	Blumenstock (UW)

“Data	Scientist	=	statistician	+	programmer	 +	coach	+	storyteller	 +	artist”	
– Shlomo Aragmon (Ill.	Inst.	of	Tech)
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Key Terminology
Let’s consider a task [that we will revisit in 
greater detail]: handwritten digit recognition

Given as input…

Have the computer correctly identify…
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Instances and Features

example, instance
Unit of input

Composed of features 
(or attributes)

• In this case, we could represent 
each digit via raw pixels: 
28x28=784-pixel vector of 
greyscale values [0-255]

– Dimensionality: number of features 
per instance (|vector|)

• But other data representations
are possible, and might be 
advantageous

• In general, the problem of feature 
selection is challenging
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Spot the Vocabulary!
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“Target” Feature
When trying to predict a particular feature given 
the others

target, label, class, concept, dependent
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Machine Learning Tasks
• Supervised

– Given a training set and a target variable, 
generalize; measured over a testing set

• Unsupervised
– Given a dataset, find “interesting” patterns; potentially 

no “right” answer

• Reinforcement
– Learn an optional action policy over time; given an 

environment that provides states, affords actions, and 
provides feedback as numerical reward, maximize 
the expected future reward
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Supervised Learning (1)
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Supervised Learning
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α β β ?…

…

γ

Training	Set Testing	Set

Goal:	generalization
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Supervised Tasks (1)

• Discrete target • Binary vs. multi-class
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Classification

SepalLength SepalWidth PetalLength PetalWidth Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa
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Supervised Tasks (2)

• Continuous target
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Under/Over-fitting
Underfitting: the model 
does not capture the 
important relationship(s)

Overfitting: the model 
describes noise instead of 
the underlying 
relationship

Approaches
• Regularization
• Robust evaluation

– Cross validation
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Introduction to Machine Learning

17



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Validation Set
• One approach in an ML-application pipeline 

is to use a validation dataset (could be a 
holdout from the training set)

• Each model is built using just training; the 
validation dataset is then used to compare 
performance and/or select model parameters

• But still, the final performance is only 
measured via an independent test set
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More Training Data = Better
• In general, the greater the amount of 

training data, the better we expect the 
learning algorithm to perform
– But we also want reasonable amounts of 

validation/testing data!

• So how do we not delude ourselves, 
achieve high performance, and a 
reasonable expectation of future 
performance?
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k-Fold Cross-Validation
• Basic approach

– Divide the data into k randomly selected partitions 
(typically 10)

– For each, use the fold as test data, the remainder 
as training data (i.e. repeat the train/test process 
k times)

– Average results

• To control for unfortunate outcomes in 
random selection, consider repeating (e.g. 10 
x 10-fold cross validation = 100 train/test)
– Expensive!
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k-Fold Cross Validation Visualized
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Common Algorithms
• Instance-based

– Nearest Neighbor (kNN)

• Tree-based
– ID3, C4.5, Random Forests

• Optimization-based
– Linear/logistic regression, support vector machines (SVM)

• Probabilistic
– Naïve Bayes

• Artificial Neural Networks
– Backpropagation
– Deep learning

March 18, 2016
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kNN

• Store all examples • Find the nearest k
neighbors to target
– Via distance function

• Vote on class
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Training Testing

Non-parametric algorithm	(i.e.	grows	
with	|examples|!)



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

2D Multiclass Classification

March 18, 2016
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Boundary Tree 1-NN via Linear Scan
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Decision Trees/Forests
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Explicit knowledge	
Representation,	 vs.	implicit
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Support Vector Machine (SVM)
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Objective	function
Kernel	trick



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Artificial Neural Networks (ANN)
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Deep	Architectures
Vanishing	Gradient

Feedforward vs.	
Recurrant

Gradient	descent

Backpropagation

Perceptron
Linear	classifier
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Unsupervised Learning
No right answer, find “interesting” structure 
or patterns in the data

Tasks
– Clustering
– Dimensionality reduction
– Density estimation
– Discovering graph structure
– Matrix completion
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Common Algorithms
• k-Means Clustering
• Collaborative Filtering
• Principle Component Analysis (PCA)
• Expectation Maximization (EM)
• Artificial Neural Networks (e.g. RBM)
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k-Means Clustering (1)
• Pick K random points 

as cluster centers 
(means)

• Alternate:
– Assign data instances 

to closest mean
– Assign each mean to 

the average of its 
assigned points

• Stop when no points’ 
assignments change
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k-Means Clustering (2)

March 18, 2016
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Example: Google News

• Group articles 
– Unsupervised

• Group labels
– Supervised

March 18, 2016
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Reinforcement Learning (RL)

March 18, 2016 33
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The RL Cycle

Agent

Environment

state
st

action
at

reward
rt+1

st+1

March 18, 2016 34
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Temporal Difference (TD) Learning

• Evidence that some neurons (dopamine) operate 
similarly

• Lead to world-class play via TD-Gammon (neural 
network trained via TD-learning)

March 18, 2016
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Q(st, at) Q(st, at) + ↵[rt+1 + �Q(st+1, at+1)�Q(st, at)]
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Issues/Challenges
• Big Data
• Curse of Dimensionality
• No Free Lunch

March 18, 2016
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Big Data – The Four V’s

March 18, 2016
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Parametric algorithm:	model	does	not	grow	with	data	size

Data	Volume

MB

GB

TB

Data	Veracity

Certain

Uncertain

Data	Velocity

Static

Real-time

Data	Variety

Homogenous

Heterogeneous
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The Curse of Dimensionality
“Various phenomena that arise when analyzing and 
organizing data in high-dimensional spaces (often 
with hundreds or thousands of dimensions) that do 
not occur in low-dimensional settings such as the 
three-dimensional physical space of everyday 
experience.” – Wikipedia

• Memory requirement increases
• Required sampling increases
• Distance functions become less useful
…
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No Free Lunch
• There is no universally best model – a set 

of assumptions that works well in one 
domain may work poorly in another

• We need many different models, and 
algorithms that have different speed-
accuracy-complexity tradeoffs
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Machine Learning Applications
1. Collect the data
2. Preprocess the data
3. Analyze the input data

– Model selection
4. Train, evaluate
5. Deployment
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Collecting Data
• Public data sets

– RSS feeds
• Application Programming Interface (API)
• Generate via sensors/logs

March 18, 2016
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Preprocessing
• Converting formats

– Binning
– Mapping
– Cleaning
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Data Analysis
• Identifying incorrect/outlier/missing data
• Use domain knowledge & simple 

statistical/visual results
– Model selection
– Feature selection/production

• Understand under/over-representation
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Train, Evaluate
• Methods for meta-parameter selection 

(e.g. k in kNN)
– Cross validation

• Iteration is likely, might consider multiple 
models if algorithmic assumptions to not 
match application/data
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Application Deployment
• Automate the data collection/processing 

pipeline
• May have to re-iterate given…

– Real-world data
– Performance constraints
– Changes in application requirements
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Summary
• Machine Learning is the study of algorithms that can learn from data

• Datasets are typically represented as a set of n instances/examples, 
each composed of k-dimensional feature vectors

• Machine Learning tasks include supervised (classification, 
regression), unsupervised, and reinforcement

• In the search for generalization over training data, supervised 
algorithms are seeking an ideal tradeoff between under/over fitting

• Machine Learning applications involve an iterative process of data 
collection/preprocessing/analysis, training/evaluation, and eventual 
deployment
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