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Informed Search
Lecture 5

How can we exploit problem-specific knowledge 
to find solutions more efficiently?

Where does this knowledge come from and 
under what conditions is it useful?
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Agenda
• Review: Uninformed Search
• Informing Search via Heuristics
• Best-First Search: Greedy, A*

– Properties: Admissibility, Consistency
• Heuristic Origins
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Search Problem Formalism
Defined via the following components:
• The initial state the agent starts in
• A successor/transition function

– S(x) = {action+cost->state}
• A goal test, which determines whether a given state is 

a goal state
• A path cost that assigns a numeric cost to each path

A solution is a sequence of actions leading from initial 
state to a goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly 
define the state space, the set of all reachable states
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State Space Graph
• State space graph: A 

mathematical representation of 
a search problem
– Nodes are (abstracted) world 

configurations
– Arcs represent successors 

(action results)
– The goal test is a set of goal 

node(s)

• In a search graph, each state 
occurs only once!

• We can rarely build this full 
graph in memory (it’s too 
big), but it’s a useful idea
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Search Tree
• A “what if” tree of plans and 

their outcomes

• The start state is the root node

• Children correspond to 
successors

• Nodes show states, but 
correspond to PLANS that 
achieve those states

• For most problems, we can 
never actually build the 
whole tree

February 16, 2016

Informed Search

5

“E”,	1.0“N”,	1.0



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Searching for Solutions
Basic idea: incrementally build a 
search tree until a goal state is found

• Root = initial state

• Expand via transition function to 
create new nodes

• Nodes that haven’t been 
expanded are leaf nodes and 
form the frontier (open list)

• Different search strategies (next 
lecture) choose next node to 
expand (as few as possible!)

• Use a closed list to prevent 
expanding the same state more 
than once
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General Algorithm
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Queue (FIFO)
Stack (LIFO)
Priority Queue
• f(n)
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Evaluating a Search Strategy

• Completeness: does it 
always find a solution if 
one exists?

• Optimality: does it 
always find a least-cost 
solution?

• Time Complexity: 
number of nodes 
generated/expanded 

• Space Complexity: 
maximum number of 
nodes in memory 
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Uninformed Search
Search given only the problem definition
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DFS BFS UCS
Fringe LIFO	(stack) FIFO	(queue) PQ	(path cost)
Complete X X
Optimal X
Time 𝒪(𝑏$) 𝒪(𝑏&) 𝒪(𝑏'∗/*)
Space 𝒪(𝑏𝑚) 𝒪(𝑏&) 𝒪(𝑏'∗/*)
Assumptions: potentially	infinite	depth,	arbitrary	positive	action	costs
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Let’s Inform the Search
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Search Heuristic
A[n] heuristic is…
• a function, ℎ 𝑛 , that estimates how 

close the input state is from a goal 
state

• designed for a particular problem

Examples: distance 
(Manhattan, Euclidean)
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Example Search Heuristic
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The Pancake Problem
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For a permutation (J"of the integers from 1 to n, let f((J")be the smallest number of prefix

reversalsthal'will transform (J"to the identity permutation, and let f(n) be the largest such f(lr)
for all (J"in (the symmetric group) Sn'We show that f(n) "'"(5n + 5)/3, and that f(n) ~ 17n/16 for
n a multiple of 16. if, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2-1""'g(n)""'2n+3.

1. Introduction

We introduce OUEproblem by the following quotation from [1]

The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I qeliver them to a customer, on the way to the
table I rearrange them (so that the smallest winds up on top, and so on, down to the
largest"at the bottom) by grabbing several from the top and flipping them over, r~peating
this (varying the number I flip) as many times as necessary. If there are n pancakes, what
is the, maximum nUmber of flips (as a function f(n) of n) that I will ever.have to use to
rearrange them?

i
[

: I

In this paper we derive upper and~lower bounds for fen).Certain bounds were
already known. For example, consider any stack of pancakes. An adjacency in
this stack is a pair of pancakes that are adjacent in the stask, and such that no
other pancake has size intermediate~ between the two. If the largest pancake is on
the bottom, this also counts as one extra adjacency. Now, fOL;n ~4 there""'are
stacks of n pancakes that have no adjaceIJcies whatsoever. On the other hand, "a
sorted stack must have all n adjacencies and each move (flip) can create'at most
one adja~ency. Consequently, forn ~4, f(n)~ n..By elaborating on this argu-
ment, M.R. Garey, D.S. Johnso-qand S. Lin [2] showed tl1at fen) ~ n+ 1dor n"F 6.
For upper bounds-algorithms, that is"it was knqwn that fen) ~ 2n. This can

be seen as follows. Given any stack we may start by bringing the largest pancake
. on top and then flip the whole stack: the largest pancake is now :;ttthe bottom,

*Research supported by NSFGrant MCS 77-01193.
t Current address: Laboratory for Computer Science, Massachusets, Institute of ?Technology,

Cambr.idge,Ma 02139, USA.
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Pancake Problem

Cost: number of pancakes flipped
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[Partial] State Space Graph
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Example Graph Search

February 16, 2016
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Action:	flip	top	two
Cost:	2

Action:	flip	all	four
Cost:	4
Path	to	reach	goal:
Flip	four,	flip	three

Total	cost:	7
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Example Search Heuristic (2)
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Heuristic:	number	of	the	largest	pancake	out	of	place
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Best-First Search
• In Graph Search, apply 𝑓 𝑛 , an evaluation 

function, for each node
– Estimates “desirability”

• Typical decomposition of 𝑓 𝑛
– g 𝑛 : cost to reach 𝑛 from initial state
– h 𝑛 : heuristic function

• Estimate of distance to goal

Special cases
– Uniform-Cost Search (UCS): 𝑓 𝑛 = 𝑔(𝑛)
– Greedy Best-First Search: 𝑓 𝑛 = ℎ(𝑛)
– A* Search: 𝑓 𝑛 = 𝑔 𝑛 + ℎ(𝑛)

February 16, 2016
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Greedy Best-First Search
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Target Problem

February 16, 2016
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Greedy Best-First Search

February 16, 2016
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Greedy Analysis
• Best case

– Take you directly to 
the nearest goal

• Common case
– Takes you [less-than-

optimally] to a goal

• Worst case
– Like badly guided DFS
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Greedy Evaluation
Time
• 𝒪(𝑏$)

– Can improve 
dramatically with a 
good heuristic

Space
• 𝒪(𝑏$)

Complete
• Only if finite

Optimal
• No

February 16, 2016
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A* Search

February 16, 2016
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Combining UCS and Greedy
• UCS: orders by path, or backward, cost, 𝑔(𝑛)
• Greedy: orders by goal proximity, or forward cost, ℎ(𝑛)
• A*: orders by the sum: 𝑓 𝑛 = 𝑔 𝑛 +ℎ(𝑛)

February 16, 2016

Informed Search

25

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

A* Search

February 16, 2016
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Arad
366=0+366

Zerind

Arad

Sibiu Timisoara
447=118+329 449=75+374393=140+253

Zerind
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Rimnicu VilceaFagaras Oradea

447=118+329 449=75+374
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Zerind

Arad

Sibiu
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526=366+160 553=300+253417=317+100

671=291+380
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Arad
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Timisoara

Sibiu Bucharest

Rimnicu VilceaFagaras Oradea
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Bucharest Craiova Rimnicu Vilcea
418=418+0

447=118+329 449=75+374

646=280+366

591=338+253 450=450+0 526=366+160 553=300+253

615=455+160 607=414+193

671=291+380
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UCS vs. A*
• Uniform-cost expands 

equally in all 
“directions”

• A* expands mainly 
toward the goal, but 
does hedge its bets to 
ensure optimality

February 16, 2016
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Is A* Optimal?

To ensure optimality, we need certain 
properties to hold on the heuristic function
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Property #1: Admissibility
• An admissible heuristic never 

overestimates cost to the goal

• Consequence: 𝑓 𝑛 never overestimates
– 𝑓 𝑛 = 𝑔 𝑛 + ℎ 𝑛
– 𝑔 𝑛 reflects actual path cost

• Example: straight-line distance (SLD)
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Issue Revisited

• Is h 𝑛 admissible?

February 16, 2016
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Idea: Admissibility

Inadmissible (pessimistic) 
heuristics break optimality 
by trapping good plans on 
the fringe

Admissible (optimistic) 
heuristics slow down bad 
plans but never outweigh 
true costs

February 16, 2016
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Checkup
For an admissible heuristic, what must the 
value of ℎ(𝑔) be, if 𝑔 is a goal?

In general…

0 ≤ ℎ 𝑛 ≤ ℎ∗ 𝑛

where ℎ∗ 𝑛 is true cost to a nearest goal

February 16, 2016

Informed Search

32



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Property #2: Consistency/Monotonicity
A[n] heuristic is consistent iff…
• for every node 𝑛, 
• and every successor 𝑛′ of 
𝑛	generated via action 𝑎,

• the estimated cost of 
reaching the goal from 𝑛 is 
no greater than the step cost 
of getting to 𝑛 plus the 
estimated cost of reaching 
the goal from 𝑛′

February 16, 2016
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𝑛

𝑛′

𝑔

𝑐(𝑛, 𝑎, 𝑛;) ℎ(𝑛)

ℎ(𝑛;)

ℎ 𝑛 ≤ 𝑐 𝑛, 𝑎, 𝑛; + ℎ(𝑛;)
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Implication of Consistency
If a[n] heuristic is consistent, 𝑓(𝑛) never 
decreases along a path

Proof… 𝑓 𝑛;
= 𝑔 𝑛; + ℎ 𝑛;
= 𝑔 𝑛 + 𝑐 𝑛, 𝑎, 𝑛; + ℎ(𝑛;)
≥ 𝑔 𝑛 + ℎ 𝑛 = 𝑓(𝑛)

February 16, 2016
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Checkup

• Admissible?
• Consistent?

February 16, 2016
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Consistency of Heuristics
Admissibility
• Heuristic ≤ actual cost

ℎ 𝐴 ≤ 𝑐(𝐴, 𝐺)

Consistency
• Heuristic ≤ actual arc

ℎ 𝐴 − ℎ(𝐶) ≤ 𝑐(𝐴, 𝐶)

February 16, 2016
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Optimality of A* Graph Search

• If ℎ(𝑛) is consistent, A* Graph Search is optimal
• All consistent heuristics are admissible

– Most admissible heuristics are also consistent
– Most of your time applying A* is finding the right ℎ(𝑛)

February 16, 2016
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Proof Ideas
Let’s assume positive 
action costs

1. A* expands nodes in 
increasing total 𝑓
value (f-contours)

2. The optimal goal(s) 
have the lowest 𝑓
value, so it must get 
expanded first

February 16, 2016
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A* Optimality Proof
1. Assume some 𝑛 on path to 

𝐺∗	isn’t in the fringe when we 
need it, b/c some worse 𝑛′ for the 
same state popped and 
expanded first

2. Let 𝑝 be the ancestor of 𝑛 that 
was on the queue when 𝑛′ was 
popped

3. 𝑓 𝑝 < 𝑓 𝑛 : consistency

4. 𝑓 𝑛 < 𝑓(𝑛;): 𝑛′ suboptimality

5. ∴ 𝑝 would have been expanded 
before 𝑛;: contradiction!

February 16, 2016
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A* Evaluation
Time
• Strongly related to the problem 

and heuristic; exponential w.r.t. 
error/solution length

Space
• Whole tree (see book for ID-A, 

RBFS, SMA*)

Complete
• Yes, assuming positive action 

costs

Optimal
• Yes, assuming consistent 

heuristic

February 16, 2016
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…
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• A* expands all nodes with 
𝑓(𝑛) < 𝐶∗

• A* expands some nodes 
with 𝑓 𝑛 = 𝐶∗

• A* expands no nodes with 
𝑓 𝑛 > 𝐶∗
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A* Applications
• Video games
• Pathing / routing 

problems
• Resource planning 

problems
• Robot motion planning
• Language analysis
• Machine translation
• Speech recognition
• …

February 16, 2016
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Creating Heuristics

February 16, 2016
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Heuristics Tradeoff
• There is a trade-off between quality of the goal estimate and 

the expended work per node to generate the estimate

• As heuristics get closer to the true cost, you will expand fewer 
nodes but usually do more work per node to compute the 
heuristic itself
– As an extreme, consider using true cost

• Often, heuristics are solutions to relaxed (i.e. easier) 
problems, where new actions are available
– Key point: the optimal solution cost of the relaxed problem must 

not over-estimate the optimal solution cost of the real problem

February 16, 2016
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Example: 8 Puzzle

February 16, 2016
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Relaxed Variant #1
• Assume you can 

move tiles anywhere
• Heuristic: number of 

tiles misplaced
– h(start) = 8

• Argue for consistency

February 16, 2016
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Start	State Goal	State

Average	nodes	expanded	
when	the	optimal	path	has…
…4	steps …8	steps …12	steps

UCS 112 6,300 3.6	x	106

TILES 13 39 227
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Relaxed Variant #2
• Assume you can 

move tiles in any 
direction independent 
of other tiles

• Heuristic: total 
Manhattan distance
– h(start)=3+1+…=18

• Argue for consistency

February 16, 2016

Informed Search

46

Start	State Goal	State

Average	nodes	expanded	
when	the	optimal	path	has…
…4	steps …8	steps …12	steps

TILES 13 39 227
MANHATTAN 12 25 73



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Heuristic Dominance
• Assume consistent heuristics: ℎI, ℎJ, …

• ∀𝑛	ℎI 𝑛 ≥ ℎJ 𝑛 ≡ ℎIdominates ℎJ
– ℎIis better for search

• If no heuristic dominates in all states, 
consider ℎ$MN 𝑛 = max	{ℎI 𝑛 , ℎJ 𝑛 ,… }
– ℎ$MN is consistent
– ℎ$MN is a dominant heuristic over the set

February 16, 2016
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Heuristic Hierarchy
• Bottom is the trivial, 

or zero, heuristic
– ∀𝑛	ℎ 𝑛 = 0

• Top is the exact 
solution

February 16, 2016
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Summary (1)
• Heuristics are problem-

specific functions that 
estimate how close the 
input state is from a 
goal state

• Good heuristics can 
dramatically reduce 
search cost
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Summary (2)
• Best-first search uses an 

evaluation function
– UCS: 𝑔(𝑛)
– Greedy: ℎ(𝑛)
– A*: 𝑔 𝑛 + ℎ(𝑛)

• A* is complete and optimal 
given a consistent heuristic

• Consistent heuristics can be 
derived from solutions to 
relaxed problems
– Exploiting dominance can 

lead to even better heuristics

February 16, 2016
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