
Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Uninformed Search
Lecture 4

What are common search strategies that 
operate only given the search problem 

formalism? How do they compare?

January 29, 2016

Uninformed Search

1



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Agenda
• A quick refresher
• DFS, BFS, ID-DFS, UCS
• Unification!

January 29, 2016

Uninformed Search

2



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Search Problem Formalism
Defined via the following components:
• The initial state the agent starts in
• A successor/transition function

– S(x) = {action+cost->state}
• A goal test, which determines whether a given state is 

a goal state
• A path cost that assigns a numeric cost to each path

A solution is a sequence of actions leading from initial 
state to a goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly 
define the state space, the set of all reachable states

January 29, 2016

Uninformed Search

3



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

State Space Graph
• State space graph: A 

mathematical representation of 
a search problem
– Nodes are (abstracted) world 

configurations
– Arcs represent successors 

(action results)
– The goal test is a set of goal 

node(s)

• In a search graph, each state 
occurs only once!

• We can rarely build this full 
graph in memory (it’s too 
big), but it’s a useful idea

January 29, 2016

Uninformed Search

4

S

G

d

b

p q

c

e

h

a

f

r



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Search Tree
• A “what if” tree of plans and 

their outcomes

• The start state is the root node

• Children correspond to 
successors

• Nodes show states, but 
correspond to PLANS that 
achieve those states

• For most problems, we can 
never actually build the 
whole tree

January 29, 2016

Uninformed Search

5

“E”,	1.0“N”,	1.0



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Searching for Solutions
Basic idea: incrementally build a 
search tree until a goal state is found

• Root = initial state

• Expand via transition function to 
create new nodes

• Nodes that haven’t been 
expanded are leaf nodes and 
form the frontier (open list)

• Different search strategies (next 
lecture) choose next node to 
expand (as few as possible!)

• Use a closed list to prevent 
expanding the same state more 
than once

January 29, 2016

Uninformed Search

6



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

General Algorithm

January 29, 2016

Uninformed Search

7

Queue (FIFO)
Stack (LIFO)
Priority Queue



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Evaluating a Search Strategy

• Completeness: does it 
always find a solution if 
one exists?

• Optimality: does it 
always find a least-cost 
solution?

• Time Complexity: 
number of nodes 
generated/expanded 

• Space Complexity: 
maximum number of 
nodes in memory 

January 29, 2016

Uninformed Search

8

Solution Efficiency



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Depth-First Search (DFS)

January 29, 2016

Uninformed Search

9



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

DFS Example

January 29, 2016

Uninformed Search

10

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy:	expand	a	
deepest	node	first

Implementation:	
Fringe	is	a	LIFO	stack



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Let’s Evaluate!

January 29, 2016

Uninformed Search

11



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Search Tree

Number of nodes in the tree?
• 1 + b + b2 + …. bm = O(bm)

January 29, 2016

Uninformed Search

12

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers

Properties
• Branching factor
• Maximum depth
• Solutions at 

various depths



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

DFS Evaluation
Time
• Expands left

– Could be whole tree!
• Assuming finite depth, 

O(bm)

Space
• Only siblings on path, 

O(bm)

Complete
• Only if finite

Optimal
• No, ”left-most” w/o 

regard to cost/depth

January 29, 2016

Uninformed Search

13

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Breadth-First Search (BFS)

January 29, 2016

Uninformed Search

14



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

BFS Example

January 29, 2016

Uninformed Search

15

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy:	expand	a	
shallowest	node	first

Implementation:	Fringe	
is	a	FIFO	queue



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

BFS Evaluation
Time
• Processes all nodes 

above shallowest 
solution, O(bs)

Space
• Has roughly the last 

tier, so O(bs)

Complete
• Yes!

Optimal
• Only if all costs are 1 

(more later)

January 29, 2016

Uninformed Search

16

…
b

1	node
b	nodes

b2 nodes

bm nodes

s	tiers

bs nodes



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

DFS vs. BFS

January 29, 2016

Uninformed Search

17

Empty-DFS

Empty-BFS

Maze-DFS

Maze-BFS



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Grounding the Branching Factor
Depth Nodes Time Memory
2 110 0.11 msecs 107 KB

4 11,110 11 msecs 10.6 MB

6 106 1.1  secs 1 GB

8 108 2  mins 103 GB

10 1010 3 hours 10 TB

12 1012 13  days 1 PB

14 1014 3.5 years 99 PB

16 1016 350 years 10 EB

January 29, 2016

Uninformed Search

18

Assumptions
• b = 10
• 1 million nodes/second
• 1000 bytes/node

Memory	often	
becomes	 the	
limiting	 factor



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Iterative Deepening DFS
• Basic idea: DFS 

memory with BFS 
time/shallow solution
– DFS up to 1
– DFS up to 2
– ….

• Generally most work 
happens in the lowest 
level searched, so not 
too wasteful

January 29, 2016

Uninformed Search

19

…
b



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Cost-Sensitive Search

• BFS finds the shortest path in terms of number of actions, but it 
does not find the least-cost path.  

• We will now cover a similar algorithm which does! 

January 29, 2016

Uninformed Search

20

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Uniform-Cost Search (UCS)

January 29, 2016

Uninformed Search

21



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

UCS Example

January 29, 2016

Uninformed Search

22

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	 cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9
1

16
4

11
5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

UCS Evaluation
Time
• O(bC*/𝜀)

Space
• O(bC*/𝜀)

Complete
• Yes!

Optimal
• Yes!

January 29, 2016

Uninformed Search

23

…
b

C*/ε “tiers”

(effective	
depth)

c	≤ 3

c	≤ 2

c	≤ 1

Assume	 solution	costs	C*	and	arcs	cost	at	least	 𝜀



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

UCS vs. DFS vs. BFS
• UCS is good and 

optimal

• However, it still 
moves in every 
direction – it’s not 
informed about goal 
direction…

January 29, 2016

Uninformed Search

24

Empty-UCS

Maze-UCS

MazeCost-DFS

MazeCost-BFS

MazeCost-UCS

…

c	≤ 3
c	≤ 2

c	≤ 1

Start Goal



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Unification
• All these search 

algorithms are the same
except for fringe 
strategies

• Conceptually, all fringes 
are priority queues (i.e. 
collections of nodes with 
attached priorities)

• Practically, for DFS and 
BFS, you can avoid the 
log(n) overhead from an 
actual priority queue, by 
using stacks and queues

January 29, 2016

Uninformed Search

25



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

A Reminder
• Search operates over 

models of the world

• The agent doesn’t 
actually try all the plans 
out in the real world!

• Planning is all “in 
simulation”

• Your search is only as 
good as your models…

January 29, 2016

Uninformed Search

26



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Search Gone Wrong

January 29, 2016

Uninformed Search

27



Wentworth Institute of Technology COMP3770 – Artificial Intelligence    | Spring 2016    | Derbinsky

Summary
• We evaluated several uninformed 

strategies to solve a search problem
– DFS, ID-DFS, BFS, UCS

• DFS, BFS, and UCS can all be 
implemented via a generic graph-search 
algorithm over a search tree by simply 
changing how the fringe is organized

January 29, 2016

Uninformed Search

28


