Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Problem-Solving via Search
Lecture 3

What is a search problem?

How do search algorithms work and how
do we evaluate their performance?

Problem-Solving via Search

January 24, 2016 1

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Agenda

* An example problem
* Problem formulation

* Infrastructure for search algorithms
— Complexity analysis

E Problem-Solving via Search

January 24, 2016

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

A Motivating Problem

o Start: Arad, Romania

 (Goal: Bucharest, Romania
— Roads leading to Sibiu, Timisoara, Zerind

— s

What is a rational
agent to do?

—

Problem-Solving via Search

January 24, 2016 3

Wentworth Institute of Technology

COMP3770 — Artificial Intelligence |

Spring 2016

Derbinsky

Add Geographical Knowledge

oy = zs = 5 y=amry 56 5 = £ > = T
Legend: 22 o ul(g;;h ovo ENEN A elftyn Koloznswia S niatyn 26 mentsi o727 58 -Podilskyf 2? rshad \\\ Scale of altitudes
[| === International border . . Y R Ocpita 4 \ and depths:
—— Mot sargSpatak,, " U KR A{I N E CHERNIVTSI Aceni Ygmpil Chechelnyk 3000 m
otorway Kis A - p L Kuty, 3 Iytsi: ipcani
e==e= Motorway under construction erehov D ’ Tk 'yzhnytsia ytsia P Kodyma 2500 m
—— Main road ynohy; hust 4 S ab iret ertsal arabani Edin ¢ Soro n ! 2000 m =
—— Secondary road F7 ' & orozhyn, i arfgenc| N - 48°
Railroad (2837 EGYH. Sk ; Tiachiv |1 SIRakhi & 3 Brochia - . 1500 m #
. O Ry 7 = 8¢ Floregti|
A Airport = >) W = S iret Risca ‘ oldZnesti 1000m
L & Port = Sigh&tu\ \Z & icobu SRibpta | S00m
[Cities and towns (nr. of inhabitants): Ujfeheért: ®)S ARE.~ Ma [/e' Vi sN/ . de Sus pdSu O stefaesti-Prut @BALTI Rezin Kotovsk! 250m
[m] > 1.000.000 S A B o g OTESANI MOLDOV 100m
[®] 300.000 - 1.000.000 CEN, 2 Oardud @MARE: o) e 0, e o Falesti) ~singerer r g
§| 300. - 1.000. S fa v . A N [: 2 Humol Su L €l = 50m
@ 100.000 - 300.000 alea | D | Ulmeni cUta Nag= -& - g = V.| A2 om
® 50.000 - 100.000 ui Mihai Eeny ulung” 22 3 F et 2 ‘
O 20.000-50.000 er Marghita_ {3 ‘ e 3 % L Benesep coraeen e g soom
.000 - 50. B T y iy | - \
: 5 giml . nei S, ubasar H
H o <20.000 lu arc® Silvaniel | Jibou So‘“ai . VAe el ascani ~L4; (, 2 Criule; . -1000 m
BUCHAREST National capital A 2 Zalku Nasau \ .93 79 T % ngheni “cjnStrases Grigodopol| -1500 m
| Major urban concentration o) Alesd Dej eclean FBistrita e L[Nea Hmoioatky isporep 4o -2000m [
(over 500.000 inhabitants) 472] “X ‘ AN O A T
— S /4 erla s ——F Rozdiln:
i iepade RANISYLVA = o o L alogéni . '
5 b Feped® N\ | TopligayBorsec” . Ro Negresti | Hincestid_ Soz|| | Tighina G P
ag Jedi CLUJ/NAPOC, - k ‘ S 72\ (Bender,
entes & L S | Beius - O Reghi 4 ‘ 2 ‘ L A | A e Ctasnoe
i Q o ~ Florest] Sarmasu & - | o . ¢ ainal i
Oroshaza crig 2OV da) CMPi Y 4 Husi imisjj
| Chisineu-C v Ik o 3 e oBacky VU Leova 3
isineu-Cri; i i & ZflLeova T tefan: Vi
dmez6vasarhely F - el L z Ludus 4 (@ ﬂ'}gu ’{ \ s
Ine Sebis) 1 o o 7% | Oglorheiu liercurea === comapesti asargbeasca o Ror
4©® ako 4 Péncota\‘ ’ nJ Jiud ‘Warnav B L XN {; £ Oriesti L nterin utyne S?@ ; N
SR Crsuf A R LATEAU saite, 1) | 4 Tay Co, \ & | # 7 ¢
| Q ot Teius 1 e~ Sighigoara iy 2 < 3 adir- ‘:3" -
6% LO Lipova o oo <o Blaj’\ raolt > . | djud unga 46
i ulia o rgu, g v Art:
er“(iand M, Mures 24 —— Miercure; et Ruj i = Panciu o A K
Faget ibiului |
e Recas poqa Devas) Sebes bl F3gita Sfantu Pupic ideuc | B U tarb
S O SimepiapeiS 1 "\ heorghe. G k
> ¢ A fOréstie Cygir saliste ® b = Odobes IcanestiA#Bolhrad
NoviBet o UBOJ " Hunedoara “ oA oY Rurig | OVictoria Codle: Intorsura Bu- Fol2a A
7 B - >, L Ny O
fa NG Otelu Rogd Hte : i cete] N RVAE | ") el
nin Gitaia N - TN\ g { GAI -
o ove
O Bocsa . . oiu Ramnij O t |
avaQPéta aral ~5p j) N £ 9 o
Brezoi A\ L 3 Sarat 10\
o ” 4 pulin ia ’ 2 BRAILAT® UBE ‘
Resifa |) 4y ” ik - q |sackea Shlin
ica ! 5 " . Ve . QW valenii N S
Alibunagq_ V132 SO S o micl S e 2 putioas WRINa \ Pde Munte BUZAUT®X. |- s
452 \ . Vit ASina, & 2 Targu Ji ‘ ag &, 3ic Mizil = °
VK =5 "4 e 4 Ta perlf” U e moreni 2 — e ei < Sfanti
Pantev le Herculin vinari C;:gb:n sti | Mioveni\ 25 O STl Z E 8 7‘,;:._' Gheorghe
] oVin el 0120 N u P| ITESTI® Targoyiste DoBRUMAN =
| D = Orsova Drobes G = aesti ni $ Harsova
0 ur' everi 4 ragasahi > . i &
3 & Jadov g S scordati AT Bu S Sloboz kel 5 BLACK
0 aia Filiasi C § Oy,
¢ Mladenovac Kutevo >, 3 & 4 il
revac ‘ | | > & |t 3 Chitil ntari | ehliu-Gars
Petrovac jdanpek anju Mare & o ® < "aa BUCHA [] i avodd . SEA
elika Pla & ° P Fetesti Medgidia \avodar)
ndelova P svilajna } CRAIOVA[®) ity I Videle tisleordeni vidiu
Neg roganest (Rosiorii Mihile 0 Calarasi) ‘6).CONSTANTA
D 2
X KRAG c\\3, \gespel °V“‘ 4 \Bor re Ved offthits q n Eforie Nord a4°
s o St ¢\ ¢ & \ N PLAT U Eforie Sud— —
Gornji 3 | | Caracal 20 —a ¥
eMilanovac Jagedira O)yCuprija Vi S iy Ballesti A L 6 :
Cadal | Paradi Zaje{a' xdpdria GiurgiuG Vos;"' Mangalia
ula t| Dabuleni \corabia (Turfu 0 ‘
Scale: 1:1.800.000 ‘ & " el lovo
g Kozlodu gurele | Gerferal Toshevo, |
o (km) 100 [S i osol Zimn h |
0 Tmi) o0 i Knjazgvac \ o \ 4 Viog) ulL RTA Sfabrich O
0% Knezha{3* N Svishtoy
STEREO 70 projection, S-42 (Romania) datum Mon! o ma‘ EN Oso, yala Razgra aaij' ‘
&l 217 ~_NIS(@22 §232 i 24° O 252 26° 27~ 28§ 29° 307

January 24, 2016

Problem-Solving via Search

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Add Abstraction

"] Oradea
.
7] Neamt
|
=l 7erind 151 87
75 - ;
™ lasi
Aracﬁ. ;
140 N 97
- Sibiu o9 Fagaras
L8 o = Vaslui
80
Timisoara Rimnicu Vilcea
| |
142
. . 211
111 ~ Lugoj Pitesti
70 = 98 .
_]5 1 : Hirsova
[JMehadia 101 ==———brzjceni
,, 86
~ W
75 0 138 Bucharest
Dobreta £
= - 90
ralova o Eforie
Giurgiu

Problem-Solving via Search

January 24, 2016 5

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Describe the Task

* Observability * Full

» Certainty « Deterministic
* Representation * Discrete

* A priori Known

Under these conditions we can search for a

problem solution, a fixed sequence of actions

* @Given a perfect model, can be done open-loop
(I.e. ignore percepts)

Problem-Solving via Search

January 24, 2016 6

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Search Problem Formalism

Defined via the following components:

* The initial state the agent starts in

* A successor/transition function
— S(x) = {action+cost->state}

« A goal test, which determines whether a given state is
a goal state

* A path cost that assigns a numeric cost to each path

A solution is a sequence of actions leading from initial
state to a goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly
detine the state space, the set of all reachable states

Problem-Solving via Search

January 24, 2016 7

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Example: Romanian Travel

* |nitial state
— Arad

e Successor

— Go to adjacent city,
cost=distance

« Goal test
— City == Bucharest

« State space
— Cities

Problem-Solving via Search

January 24, 2016 8

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Example: Pacman
* Initial state H

Nlou

\

”E", 1.0

« State space H!u!-..

» Goal test: no more food (e.g. -)

e« Successor function

Problem-Solving via Search

January 24, 2016 9

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

State Abstraction

» Often world states are absurdly complex

* To solve a particular problem, we abstract
the search state to only represent details
necessary to solve the problem

Problem-Solving via Search
January 24, 2016 10

Wentworth Institute of Technology

Examp

Path Planning

« States: (x,y)

* Actions: NSEW

* Successor: (xX',y’)

* Goal test: (x,y)=END

COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

le Abstractions

Eat All the Dots

« States: {(x,y), T/F grid}
« Actions: NSEW

» Successor: (X,V),
possibly T/F change

« Goal test: grid=all F’'s

Problem-Solving via Search
January 24, 2016

11

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Abstraction is Necessary

World state

* Agent positions: 120
* Food count: 30

* Ghost positions: 12
« Agent facing: NSEW

How many...

* World states?
— 120x(239)x(122%)x4

« States for path planning?
~ 120

o States for eat-all-dots?
— 120x(230)

Problem-Solving via Search
January 24, 2016 12

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Exercise

Describe the vacuum-cleaner world search
problem:

— World state representation

— Search state representation

— Transition model
« State space

— Goal test

Problem-Solving via Search
January 24, 2016 13

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Solution State Space Graph

=]
&

Problem-Solving via Search
January 24, 2016 14

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

State Space Graph

« State space graph: A
mathematical representation of
a search problem

— Nodes are (abstracted) world
configurations

— Arcs represent successors
(action results)

— The goal test is a set of goal
node(s)

* In asearch graph, each state
occurs only once!

 We can rarely build this full
graph in memory (it’s too
big), but it’s a useful idea

Problem-Solving via Search

January 24, 2016 15

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Search Tree

 A“what if’ tree of plans and !

their outcomes
« The start state is the

« Children correspond
successors

”N”, 10 ”E”, 10
root node

) G B

I e

 Nodes show states, but
correspond to PLANS that

achieve those states

 For most problems, we can
never actually build the

whole tree

Problem-Solving via Search
January 24, 2016

16

| Spring 2016 | Derbinsky

Wentworth Institute of Technology COMP3770 — Artificial Intelligence

State Space Graph vs. Search Tree

— T
d e p
—_— N~ 1
b c e h r q
[1 N e Y
a a h r p q f
Y| —
p q f q N
' —~ '
g ¢ G a

« Each NODE inin the search tree is an entire PATH in
the state space graph.

 We construct both on demand — and we construct as
little as possible.

Problem-Solving via Search
17

January 24, 2016

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Exercise

Consider the following How big is its search
4-state state space tree (from S)?
graph...

o@lic O

Problem-Solving via Search
January 24, 2016 18

Wentworth Institute of Technology COMP3770 — Artificial Intelligence

L]

L4

L

January 24, 2016

Spring 2016

Searching for Solutions

Basic idea: incrementally build a
search tree until a goal state is found

Root = initial state

Expand via transition function to
create new nodes

Nodes that haven't been
expanded are leaf nodes and
form the frontier (open list)

Different search strategies (next
lecture) choose next node to
expand (as few as possible!)

Use a closed list to prevent
expanding the same state more
than once

Problem-Solving via Search

Derbinsky

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

General Algorithm

Arad

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure Queue (FIFO)
closed <—an empty set Stack (LlFO)
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) Priority Queue
loop do

if fringe is eturn failure
node & REMOVE-FRONT(fridge)

if GOAL-TEST(problem, STATE[node]) then return node
if STATE[nod¢] is not in closed then

add STATE[node] to closed

fringe «— INSERT ALL(EXPAND(node, problem), fringe)

end

Problem-Solving via Search
January 24, 2016 20

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Evaluating a Search Strategy

Solution Efficiency

« Completeness: does it Time Complexity:
always find a solution if number of nodes
one exists? generated/expanded

« Optimality: does it « Space Complexity:
always find a least-cost maximum number of
solution? nodes in memory

Problem-Solving via Search
January 24, 2016 1

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Computational Complexity (A.1)

* \We are going to be comparing several algorithms
— How do we tell if one is faster/leaner than another?

 Benchmarking involves running the algorithm on
a computer and measuring performance (e.g. time
in sec, memory in bytes)

— Unsatisfactory: specific to machine, implementation,
compiler, inputs, ...

« Complexity Analysis is a mathematical approach
that abstracts away from these details

Problem-Solving via Search
January 24, 2016 99

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Asymptotic Analysis

Basic idea: get a sense of “rate of growth” of an
algorithm, which tells us how “bad” it will get as
problem size grows

Example

def summation(l):
sum = O
for n in 1:
sum += n
return sum

Problem-Solving via Search
January 24, 2016 3

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Step 1: ldentify Size Parameter

 \We need to abstract def ::r:‘m:t(i;"(lﬁ
over the input and just for n in 1:

sum += n
return sum

identify what parameter
characterizes the size
of the input

* For the example what
matters is the length of
the input list

— We'll refer to this as n

Problem-Solving via Search
January 24, 2016 4

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Step 2: Identify Performance Measure

* Again, abstract over the def summation(l):

implementation and find sum = 0

a measure that reflects for n in 1:
running time (or
memory usage), not
tied to a particular
computer

sum += n
return sum

I_n this case it could be
lines executed, or

operations (additions, If f(n) measures lines executed
assignments) f(n) =2n +2
performed

— Call this f(n)

Problem-Solving via Search

January 24, 2016

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Step 3: Identify Comparison Metric

* It is typically not possible to identify exactly
the size parameter (i.e. one that perfectly
characterizes the performance), and so we
settle for a representative metric

e Most common Is worst case
— Sometimes best case, average case

Problem-Solving via Search
January 24, 2016 %6

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Step 4: Approximation

* Typically it is hard to exactly compute f(n),
and so we settle for an approximation

* For worst-case, Big-O notation, O(), yields
this formal asymptotic analysis...

f(n) =0O(g(n)) asn — oo
=dce N, ke N s.t.
vn >k |f(n)] < clg(n)|

Problem-Solving via Search

January 24, 2016 27

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Big-O Definition Visually

cg({n)
f (n)

Problem-Solving via Search
January 24, 2016 28

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Example

o Since f(n) =2Nn + 2 def summation(1l):
- sum = O
we can show that this for n in 1:
: : sum += n
function is O(n) eturn sum
— c=3, k=2

50
40
30
20
10
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—8—2n+2 —4—3n

Problem-Solving via Search
January 24, 2016 29

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Exercise

Prove: 5n2+ 3n + 9 = O(n?)

Problem-Solving via Search
January 24, 2016 30

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Solution
Find ¢ and k such that...

Vn>k cn®>5m°+3n+9

1. Solve: ¢n? =5n° +3n+9
3 9

2. Let n=k, solve: ¢ = 5 |
_ Ifk=3, c=7 k

3.S0..Tn° >5n*+3n+9 Vn >3
— Andthus... 5n* + 3n + 9 = O(n?)

Problem-Solving via Search
January 24, 2016 31

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Order of Complexity
« O(A)+0O(B) = Algorithm
max(O(A), O(B))

— Slower parts of an
algorithm dominate O(B)

faster parts

Algorithm
* O(A)*O(B) =
O(A*B)
— Nesting O(A) does not

include complexity
of part B of algorithm

Problem-Solving via Search
January 24, 2016 32

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Exercise

2 +1
r+1

Prove:

O(x)

Problem-Solving via Search
January 24, 2016 33

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Solution

a;2+1)_ O(z* + 1)
r+1" O(x+1)
:(’)(:1:2)

O(

January 24, 2016 34

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016

Big-O Numerically

O(1) Constant 1
O(log n) Logarithmic 3
O(n) Linear 10
O(nlog n) Log-Linear, Linearithmic 33
O(n?) Quadratic 100
O(2") Exponential 1,024
O(n!) Factorial 3,628,800

It’s important to know this ranking of growth!

Problem-Solving via Search
January 24, 2016

Derbinsky

35

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Asymptotic Visual

O(n!)

Problem-Solving via Search
January 24, 2016 36

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Asymptotic Visual (zoom)

O(n)

O(nlogn)

O(logn)

o(1)

Problem-Solving via Search
January 24, 2016 37

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Example: O(1)

Stays constant regardless of problem size

— Check even/odd
— Hash computation
— Array indexing

int getRondomNumber ()
.,l HASH l, jrt R
M H H(#) O cmeeantent ta ot oo,
3

Problem-Solving via Search

January 24, 2016 38

Wentworth Institute of Technology COMP3770 — Artificial Intelligence Spring 2016 | Derbinsky

Example: O(logn)

Inverse of exponential: as you
double the problem size, resource
consumption increases by a
constant

— Binary search

— Balanced tree search 35

P
- - I
LA AOROMEDA W

—— ONE VULLION LIGHT YEARS ——

Problem-Solving via Search

January 24, 2016

Wentworth Institute of Technology

COMP3770 — Artificial Intelligence

Spring 2016 |

Example: O(n log n)

Performing an O(log n) operation for each
item In your input
— Typical of efficient

sorting

‘38‘27‘43‘3‘9‘82‘10‘

oo

Problem-Solving via Search

January 24, 2016

INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LisT):
IF LENGH(LIST) < 2:
RETORN LIST
PNOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE S0RT (usr[:PrvorJg
B = HALFHEARTEDMERGE SORT (LIsT [PNOT:]
// UMMMMM
RETURN [A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMIZED BOGOSORT
// RONS IN O(N LoGN)
FOR N FROM 1. TO LOG(LENGTH(LIST)):
SHUFFLE(LST):
IF 1550RTED (LIST):
REORN LS
RETURN “KERNEL PAGE FRULT (ERROR (PDE: 2)°

DEFNE JOBINTERVEW QUICKSORT (LisT):
0K 50 YoU CHOOSE. A PVOT
THEN DIVIDE THE ST IN HALF
FOR EACH HALF:
CHECK To SEE IF ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PNVOT
THE BIGGER ONES GO IN ANBW LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST”
CALL IT ST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSVELY CAUS SELF
UNTIL BOTH UISTS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM T ALLOWED © USE THE STANDARD LIBRARIES?

DEFINE PANICSORT(LisT):
IF [SSORTED (LIST):
REURN LIST
FOR N FROM 1o 10000:
PIVOT = RANDOM (0, LENGTH(L1ST))
UsT = LsT [Pvor: 1+ LISt :PvoT]
IF 1550RTED(LIST):
RETURN UST
IF ISSORTED(LIST):
RETURN UST:
IF 1SSORTED(LIST): //THIS CAN'T BE HAPPENING
RETORN LIST
IF ISSORTED (LIST): // COME ON COME ON
RETRN UST
/| OH JEEZ
// Tt GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SystEM ("RM -RF /")
SYSTEM(RD /5 /Q C:*") //PORTABILITY
RETORN [1,2, 3, 4,5]

40

Derbinsky

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Example: O(n?)

For each item, perform an operation with
each other item

— Duplication detection

— Pairwise comparison
— Bubble sort

Problem-Solving via Search
January 24, 2016 A1

Wentworth Institute of Technology COMP3770 — Artificial Intelligence

Example: O(2")

| Spring 2016 | Derbinsky

For every added element, resource

consumption doubles

— Hardware verification
— Cryptography perowes:
1 IMAGINATION &

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLUSTER To CRACK \T.

) on -2 NO GooD! TS
Z} 0% -BIT RSA‘
_><P %s EVIL Pum

1S FOILED!

-]

| ACTUALLY HAPPEN:

WHAT WOULD

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT IT,

%Q

Problem-Solving via Search
January 24, 2016

42

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Complexity Analysis

« Thus far we have analyzed algorithms, but complexity analysis focuses on
problems, and classes of problems

« Problems that can be solved in polynomial time, O(nk), form class P

— Generally considered “easy”
(but could have large c)

* Problems in which you can verify a solution in polynomial time form NP
— The “hardest” in NP are NP-complete

?
« Open question: P = NP
— Most computer scientists assume not
— If correct, there can be no algorithm that solves all such problems in polynomial time

— Al isinterested in developing algorithms that perform efficiently on typical problems
drawn from a pre-determined distribution

Problem-Solving via Search

January 24, 2016 43

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Complex][ity] Humor (TSP)

BRUTE -FORCE DYNAMIC |
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
ALGORITHMS: 0(1)

O (n!) O (n*2")
STILL WORKING
ON YOUR ROUTE?

\ '—-@—
N\
SHUT THE |
HEW VR

Problem-Solving via Search
January 24, 2016 44

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Complex[ity] Humor (Al)

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK UHETHER
THEYRE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOURS.

.. AND CHECK WHETHER
THE PHOTO 15 OF A BIRD.

T1L NEED A RESEARCH

% 'I'EF\MANDFNE/YEARS

IN C5, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Problem-Solving via Search
January 24, 2016 45

Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Summary

« We can represent deterministic, fully observable, discrete,
known tasks as search problems

— Initial state, transition function, goal test, path cost
« State space: all states reachable from initial

— Solution: actions sequence, initial->goal
« Optimal: least path cost

 We abstract search state representation depending on the
search problem for computational tractability

* Once formulated, we solve a search problem by incrementally
forming a search tree until a goal state is found

— We evaluate algorithms with respect to solution
completeness/optimality and time/space complexity

— More next lecture!

Problem-Solving via Search

January 24, 2016 46

