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Problem-Solving via Search
Lecture 3

What is a search problem?

How do search algorithms work and how
do we evaluate their performance?
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Agenda

* An example problem
* Problem formulation

* Infrastructure for search algorithms
— Complexity analysis
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A Motivating Problem

o Start: Arad, Romania

 (Goal: Bucharest, Romania
— Roads leading to Sibiu, Timisoara, Zerind

— s

What is a rational
agent to do?

—
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Add Abstraction
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Describe the Task

* Observability * Full

» Certainty « Deterministic
* Representation * Discrete

* A priori  Known

Under these conditions we can search for a

problem solution, a fixed sequence of actions

* @Given a perfect model, can be done open-loop
(I.e. ignore percepts)

Problem-Solving via Search
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Search Problem Formalism

Defined via the following components:

* The initial state the agent starts in

* A successor/transition function
— S(x) = {action+cost->state}

« A goal test, which determines whether a given state is
a goal state

* A path cost that assigns a numeric cost to each path

A solution is a sequence of actions leading from initial
state to a goal state. (Optimal = lowest path cost.)

Together the initial state and successor function implicitly
detine the state space, the set of all reachable states

Problem-Solving via Search
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Example: Romanian Travel

* |nitial state
— Arad

e Successor

— Go to adjacent city,
cost=distance

« Goal test
— City == Bucharest

« State space
— Cities

Problem-Solving via Search
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Example: Pacman
* Initial state H

Nlou

\

”E", 1.0

« State space H!u!-..

» Goal test: no more food (e.g. - )

e« Successor function

Problem-Solving via Search
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State Abstraction

» Often world states are absurdly complex

* To solve a particular problem, we abstract
the search state to only represent details
necessary to solve the problem

Problem-Solving via Search
January 24, 2016 10
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Path Planning

« States: (x,y)

* Actions: NSEW

* Successor: (xX',y’)

* Goal test: (x,y)=END

COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

le Abstractions

Eat All the Dots

« States: {(x,y), T/F grid}
« Actions: NSEW

» Successor: (X,V),
possibly T/F change

« Goal test: grid=all F’'s

Problem-Solving via Search
January 24, 2016

11




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Abstraction is Necessary

World state

* Agent positions: 120
* Food count: 30

* Ghost positions: 12
« Agent facing: NSEW

How many...

* World states?
— 120x(239)x(122%)x4

« States for path planning?
~ 120

o States for eat-all-dots?
— 120x(230)

Problem-Solving via Search
January 24, 2016 12
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Exercise

Describe the vacuum-cleaner world search
problem:

— World state representation

— Search state representation

— Transition model
« State space

— Goal test

Problem-Solving via Search
January 24, 2016 13
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Solution State Space Graph

=]
&

Problem-Solving via Search
January 24, 2016 14




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

State Space Graph

« State space graph: A
mathematical representation of
a search problem

— Nodes are (abstracted) world
configurations

— Arcs represent successors
(action results)

— The goal test is a set of goal
node(s)

* In asearch graph, each state
occurs only once!

 We can rarely build this full
graph in memory (it’s too
big), but it’s a useful idea

Problem-Solving via Search
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Search Tree

 A“what if’ tree of plans and !

their outcomes
« The start state is the

« Children correspond
successors

”N”, 10 ”E”, 10
root node

) G B

I e

 Nodes show states, but
correspond to PLANS that

achieve those states

 For most problems, we can
never actually build the

whole tree

Problem-Solving via Search
January 24, 2016
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State Space Graph vs. Search Tree
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« Each NODE inin the search tree is an entire PATH in
the state space graph.

 We construct both on demand — and we construct as
little as possible.

Problem-Solving via Search
17
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Exercise

Consider the following How big is its search
4-state state space tree (from S)?
graph...

o@lic O

Problem-Solving via Search
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Searching for Solutions

Basic idea: incrementally build a
search tree until a goal state is found

Root = initial state

Expand via transition function to
create new nodes

Nodes that haven't been
expanded are leaf nodes and
form the frontier (open list)

Different search strategies (next
lecture) choose next node to
expand (as few as possible!)

Use a closed list to prevent
expanding the same state more
than once

Problem-Solving via Search
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General Algorithm

Arad

function GRAPH-SEARCH( problem, fringe) returns a solution, or failure Queue (FIFO)
closed <—an empty set Stack (LlFO)
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) Priority Queue
loop do

if fringe is eturn failure
node & REMOVE-FRONT(fridge)

if GOAL-TEST(problem, STATE[node]) then return node
if STATE[nod¢] is not in closed then

add STATE[node] to closed

fringe «— INSERT ALL(EXPAND(node, problem), fringe)

end

Problem-Solving via Search
January 24, 2016 20
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Evaluating a Search Strategy

Solution Efficiency

« Completeness: does it  Time Complexity:
always find a solution if number of nodes
one exists? generated/expanded

« Optimality: does it « Space Complexity:
always find a least-cost maximum number of
solution? nodes in memory

Problem-Solving via Search
January 24, 2016 1
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Computational Complexity (A.1)

* \We are going to be comparing several algorithms
— How do we tell if one is faster/leaner than another?

 Benchmarking involves running the algorithm on
a computer and measuring performance (e.g. time
in sec, memory in bytes)

— Unsatisfactory: specific to machine, implementation,
compiler, inputs, ...

« Complexity Analysis is a mathematical approach
that abstracts away from these details

Problem-Solving via Search
January 24, 2016 99
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Asymptotic Analysis

Basic idea: get a sense of “rate of growth” of an
algorithm, which tells us how “bad” it will get as
problem size grows

Example

def summation(l):
sum = O
for n in 1:
sum += n
return sum

Problem-Solving via Search
January 24, 2016 3
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Step 1: ldentify Size Parameter

 \We need to abstract def ::r:‘m:t(i;"(lﬁ
over the input and just for n in 1:

sum += n
return sum

identify what parameter
characterizes the size
of the input

* For the example what
matters is the length of
the input list

— We'll refer to this as n

Problem-Solving via Search
January 24, 2016 4
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Step 2: Identify Performance Measure

* Again, abstract over the def summation(l):

implementation and find sum = 0

a measure that reflects for n in 1:
running time (or
memory usage), not
tied to a particular
computer

sum += n
return sum

I_n this case it could be
lines executed, or

operations (additions, If f(n) measures lines executed
assignments) f(n) =2n +2
performed

— Call this f(n)

Problem-Solving via Search
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Step 3: Identify Comparison Metric

* It is typically not possible to identify exactly
the size parameter (i.e. one that perfectly
characterizes the performance), and so we
settle for a representative metric

e Most common Is worst case
— Sometimes best case, average case

Problem-Solving via Search
January 24, 2016 %6
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Step 4: Approximation

* Typically it is hard to exactly compute f(n),
and so we settle for an approximation

* For worst-case, Big-O notation, O(), yields
this formal asymptotic analysis...

f(n) =0O(g(n)) asn — oo
=dce N, ke N s.t.
vn >k |f(n)] < clg(n)|

Problem-Solving via Search
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Big-O Definition Visually

cg({n)
f (n)

Problem-Solving via Search
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Example

o Since f(n) =2Nn + 2 def summation(1l):
- sum = O
we can show that this for n in 1:
: : sum += n
function is O(n) eturn sum
— c=3, k=2

50
40
30
20
10
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

—8—2n+2 —4—3n

Problem-Solving via Search
January 24, 2016 29




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Exercise

Prove: 5n2+ 3n + 9 = O(n?)

Problem-Solving via Search
January 24, 2016 30
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Solution
Find ¢ and k such that...

Vn>k cn®>5m°+3n+9

1. Solve: ¢n? =5n° +3n+9
3 9

2. Let n=k, solve: ¢ = 5 |
_ Ifk=3, c=7 k

3.S0..Tn° >5n*+3n+9 Vn >3
— Andthus... 5n* + 3n + 9 = O(n?)

Problem-Solving via Search
January 24, 2016 31
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Order of Complexity
« O(A)+0O(B) = Algorithm
max(O(A), O(B))

— Slower parts of an
algorithm dominate O(B)

faster parts

Algorithm
* O(A)*O(B) =
O(A*B)
— Nesting O(A) does not

include complexity
of part B of algorithm

Problem-Solving via Search
January 24, 2016 32
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Exercise

2 +1
r+1

Prove:

O(x)

Problem-Solving via Search
January 24, 2016 33




Wentworth Institute of Technology COMP3770 — Artificial Intelligence | Spring 2016 | Derbinsky

Solution

a;2+1)_ O(z* + 1)
r+1"  O(x+1)
:(’)(:1:2)

O(

January 24, 2016 34
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Big-O Numerically

O(1) Constant 1
O(log n) Logarithmic 3
O(n) Linear 10
O(nlog n) Log-Linear, Linearithmic 33
O(n?) Quadratic 100
O(2") Exponential 1,024
O(n!) Factorial 3,628,800

It’s important to know this ranking of growth!

Problem-Solving via Search
January 24, 2016
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Asymptotic Visual

O(n!)

Problem-Solving via Search
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Asymptotic Visual (zoom)

O(n)

O(nlogn)

O(logn)

o(1)

Problem-Solving via Search
January 24, 2016 37
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Example: O(1)

Stays constant regardless of problem size

— Check even/odd
— Hash computation
— Array indexing

int getRondomNumber ()
.,l HASH l, jrt R
M H H(#) O cmeeantent ta ot oo,
3

Problem-Solving via Search
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Example: O(logn)

Inverse of exponential: as you
double the problem size, resource
consumption increases by a
constant

— Binary search

— Balanced tree search 35

P
- - I
LA AOROMEDA W

—— ONE VULLION LIGHT YEARS ——
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Example: O(n log n)

Performing an O(log n) operation for each
item In your input
— Typical of efficient

sorting

‘38‘27‘43‘3‘9‘82‘10‘

oo

Problem-Solving via Search
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INEFFECTIVE SORTS

DEFINE. HALFHEARTEDMERGESORT (LisT ):
IF LENGH(LIST) < 2:
RETORN LIST
PNOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGE S0RT (usr[:PrvorJg
B = HALFHEARTEDMERGE SORT (LIsT [PNOT: ]
// UMMMMM
RETURN [A, B] // HERE. SORRY.

DEFINE FRSTBOGOSORT(LIST):
// AN OPTMIZED BOGOSORT
// RONS IN O(N LoGN)
FOR N FROM 1. TO LOG( LENGTH(LIST)):
SHUFFLE(LST):
IF 1550RTED (LIST):
REORN LS
RETURN “KERNEL PAGE FRULT (ERROR (PDE: 2)°

DEFNE JOBINTERVEW QUICKSORT (LisT):
0K 50 YoU CHOOSE. A PVOT
THEN DIVIDE THE ST IN HALF
FOR EACH HALF:
CHECK To SEE IF ITS SORED
NO, WAIT ITDOESN'T MATTER
COMPARE EACH ELEMENT To THE PNVOT
THE BIGGER ONES GO IN ANBW LIST
THE EQUAL ONES GO INTO, UH
THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS
THIS IS LST A
THE NEW ONE 1S LIST B
PUT THE BIG ONES INTO UST B
NOW TAKE THE SECOND LIST”
CALL IT ST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH AL THAT
ITJUST RECURSVELY CAUS SELF
UNTIL BOTH UISTS ARE EMPTY
RIGHT?
NOT” EMPTY, BUT YOU KNOW WHAT T MEAN
AM T ALLOWED © USE THE STANDARD LIBRARIES?

DEFINE PANICSORT( LisT):
IF [SSORTED (LIST ):
REURN LIST
FOR N FROM 1o 10000:
PIVOT = RANDOM (0, LENGTH(L1ST))
UsT = LsT [Pvor: 1+ LISt :PvoT]
IF 1550RTED(LIST):
RETURN UST
IF ISSORTED(LIST):
RETURN UST:
IF 1SSORTED(LIST):  //THIS CAN'T BE HAPPENING
RETORN LIST
IF ISSORTED (LIST): // COME ON COME ON
RETRN UST
/| OH JEEZ
// Tt GONNA BE IN 50 MUCH TROUBLE
ust=L1]
SYSTEM (“SHUTDOWN -H +5)
SysTEM (“RM -RF /")
SYSTEM ("RM -RF ~/#")
SystEM ("RM -RF /")
SYSTEM(RD /5 /Q C:\*") //PORTABILITY
RETORN [1,2, 3, 4,5]

40
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Example: O(n?)

For each item, perform an operation with
each other item

— Duplication detection

— Pairwise comparison
— Bubble sort

Problem-Solving via Search
January 24, 2016 A1
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Example: O(2")

| Spring 2016 | Derbinsky

For every added element, resource

consumption doubles

— Hardware verification
— Cryptography  perowes:
1 IMAGINATION &

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLUSTER To CRACK \T.

) on -2 NO GooD! TS
Z} 0% -BIT RSA‘
_><P %s EVIL Pum

1S FOILED!

-]

| ACTUALLY HAPPEN:

WHAT WOULD

H'S LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT IT,

%Q

Problem-Solving via Search
January 24, 2016
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Complexity Analysis

« Thus far we have analyzed algorithms, but complexity analysis focuses on
problems, and classes of problems

« Problems that can be solved in polynomial time, O(nk), form class P

— Generally considered “easy”
(but could have large c)

* Problems in which you can verify a solution in polynomial time form NP
— The “hardest” in NP are NP-complete

?
« Open question: P = NP
— Most computer scientists assume not
— If correct, there can be no algorithm that solves all such problems in polynomial time

— Al isinterested in developing algorithms that perform efficiently on typical problems
drawn from a pre-determined distribution

Problem-Solving via Search
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Complex][ity] Humor (TSP)

BRUTE -FORCE DYNAMIC |
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
ALGORITHMS: 0(1)

O (n!) O (n*2")
STILL WORKING
ON YOUR ROUTE?

\ '—-@—
N\
SHUT THE |
HEW VR

Problem-Solving via Search
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Complex[ity] Humor (Al)

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK UHETHER
THEYRE. IN A NATIONAL PARK ...

SURE, ERSY GIS LOOKUR
GIMME A FEW HOURS.

.. AND CHECK WHETHER
THE PHOTO 15 OF A BIRD.

T1L NEED A RESEARCH

% 'I'EF\MANDFNE/YEARS

IN C5, IT CAN BE HARD TO EXPLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.

Problem-Solving via Search
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Summary

« We can represent deterministic, fully observable, discrete,
known tasks as search problems

— Initial state, transition function, goal test, path cost
« State space: all states reachable from initial

— Solution: actions sequence, initial->goal
« Optimal: least path cost

 We abstract search state representation depending on the
search problem for computational tractability

* Once formulated, we solve a search problem by incrementally
forming a search tree until a goal state is found

— We evaluate algorithms with respect to solution
completeness/optimality and time/space complexity

— More next lecture!

Problem-Solving via Search
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