
Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Indexes

Lecture 11

18 March 2016

Indexes

1

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Outline
• Context
• Functionality
• Utility
• Tradeoffs and considerations

– Selectivity
• Index types

18 March 2016

Indexes

2

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Database Design and Implementation Process

18 March 2016

Indexes

3

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

What is an Index?
• Persistent data structure, stored in the

database

• Primary mechanism to get improved query
performance

• Many interesting issues (see Ch. 16-17);
we will focus on usage, tradeoffs

18 March 2016

Indexes

4

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Creating an Index
CREATE [UNIQUE] INDEX index_name
ON table_name (c_name1, …)
[OPTIONS];

Notes
• Ordering of columns is VERY important
• Options often refer to the type of index

being used and other important flags

18 March 2016

Indexes

5

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Functionality
An index answers certain kinds of questions
very efficiently (depends upon type)

– Equality: fieldname=value
– Range/ordering: fieldname>value

• Only index that maintains ordering
(e.g. tree-based)

Can be used for WHERE clause, as well as
JOIN and ORDER BY

18 March 2016

Indexes

6

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Comparison (1)
SELECT * FROM T
WHERE …

• No indexes (indices)
Anything = full table scan

• Index on (A)
A = 'panda' (fast)
A > 'dog' (fast, if ordered index)
ORDER BY A (fast, if ordered)

• Index on (B)
B = 1 (fast)
B <= 5 (fast, if ordered)
ORDER BY B (fast, if ordered)

• Index on (A, B)
A = 'cat' (fast)
A = 'cat' AND B >= 3 (fast, if ordered)
A <= 'panda' ORDER BY B (fast, if ordered)
Anything not starting with A = full table scan

• Index on (C,A), (C,B), … (i.e. start with C)
Anything not starting with C = full table scan

T A B C

1 cat 1 …

2 dog 3 …

3 panda 7 …

4 cat 4 …

5 cat 5 …

6 panda 9 …

7 moose 10 …

8 dog 8 …

9 dog 10 …

18 March 2016

Indexes

7

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Comparison (2)

18 March 2016

Indexes

8

T1 A B C

1 cat 1 …

2 dog 3 …

3 panda 7 …

4 cat 4 …

T2 X Y Z

i felidae 1 …

ii canidae 3 …

iii bear 7 …

iv felidae 4 …

T1 JOIN T2 ON T1.B=T2.Y
• No indexes: scan T1, scan T2 (n2)
• Index on T1(B): scan T2, fast search in T1
• Index on T2(Y): scan T1, fast search in T2
• Index on T1(B), T2(Y): merge sort (if ordered)

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Utility

• Can make the difference
between full table scan
and log/constant lookup

• Extra space
– Linear with # rows

• Extra time
– Creation (moderate)
– Maintenance (can offset

savings)

18 March 2016

Indexes

9

Pro Con

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Choosing the Index(es) to Create
• Table size

– Many rows = larger cost to table scan

• Data distribution (selectivity)
– Fewer distinct values = higher likelihood needing to touch

many rows, independent of index usage
• Index can lead to lots of IO/cache misses vs. sequential scan

via clustered index

• Query vs. update load
– Many updates = higher relative index maintenance cost
– Analysis of frequent queries leads to choosing key

attributes that get you the most bang for your buck

18 March 2016

Indexes

10

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Selectivity
• Cardinality: # distinct values in a column

SELECT COUNT(DISTINCT col_name)
FROM table_name;

• Selectivity: 100% * cardinality / # rows
– Compare for 10K rows…

• Gender (M/F)
• Country (195 + Taiwan)
• Birthday (Jan. 1 -> Dec. 31)

18 March 2016

Indexes

11

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

General Advice
• Use narrow indexes (i.e. few columns); these are more

efficient than compound indices

• Avoid a large number of indices on a table

• Avoid “overlapping” indices that contain shared columns
(often a single index can service multiple queries)

• For indices that contain more than one column: given no other
constraints, place the most selective column first

• Unless you have very good reason, always define a PK (in
most RDBMSs, results in a clustered index, more shortly)

18 March 2016

Indexes

12

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Index Types
• Clustered vs. Non-clustered
• Covering (w.r.t. a query)
• Balanced Trees (B+-Trees)
• Hash Tables
• Other

18 March 2016

Indexes

13

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Clustered vs. Non-clustered
• Clustered: affects physical order on disk

– At most one per table (for some RDBMS, PK)
– Fast when data accessed in order/reverse

• Non-clustered: induces logical ordering
– Arbitrary number per table
– Depending on the query/data, can lead to

significant slowdown due to cache misses and
frequent disk access

18 March 2016

Indexes

14

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Covering
ID Name

1 Alice

2 Bob

3 Carol

4 Dan

18 March 2016

Indexes

15

• Typically indexes help
the DBMS find the row
of interest
– ID -> Name
– Name->ID

• A covering index contains all
the necessary data within the
index itself (w.r.t. to query or
queries)
– More storage vs. IO savings
– (ID, Name) or (Name, ID)

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

B+-Trees

• Balanced, constant out-degree (within range)
• Values (i.e. row pointer) only at leaves

– Distinguishes from a B-tree
– Linked list at leaves, in order

• Logarithmic traversal, constant at leaf
– Top k levels usually kept in memory (e.g. 2-3)

• Typical default index for DBMS; also used in file systems, etc.

18 March 2016

Indexes

16

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Hash Table

• “Constant” access time (under certain
assumptions, amortized)

• No range queries

18 March 2016

Indexes

17

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Other
• Bitmap

– Useful for low-update systems (e.g. read-only) with low
cardinality attributes (e.g. gender)

• Trie
– Useful for sequence queries (e.g. bioinformatics)

• Spatial (e.g. R-tree)
– Useful for queries about space (e.g. what stores are close

to me? what planes are within 1 mile of each other?)

• Inverted
– Useful for full-text search (e.g. search engines)

18 March 2016

Indexes

18

Wentworth Institute of Technology COMP2670 – Databases | Spring 2016 | Derbinsky

Summary
• Indexes are persistent data structures, such as has

tables and b+-trees), stored in the database in order to
improve the speed of certain query operations
– An important aspect of the physical design of a database

• When creating an index, attribute order is very
important!

• Indexes are an example of a space-time tradeoff
– To make an informed decision, you should consider query

load, table size, data distribution, and details about the
index type (e.g. ordered)

18 March 2016

Indexes

19

