
Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

SQL: Part 1

Lecture 3

1.18.2016

SQL: Part 1

1



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Outline
1. Context
2. Getting Data Out: SELECT
3. Changing Data: INSERT, UPDATE, DELETE

1.18.2016

SQL: Part 1

2



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

In the Beginning…
Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL: A structured 
English query language." Proceedings of the 1974 ACM SIGFIDET (now 
SIGMOD) workshop on Data description, access and control. ACM, 1974.

1.18.2016

SQL: Part 1

3

“In this paper we present the data manipulation facility for
a structured English query language (SEQUEL) which can be
used for accessing data in an integrated relational data
base. Without resorting to the concepts of bound variables
and quantifiers SEQUEL identifies a set of simple operations
on tabular structures, which can be shown to be of
equivalent power to the first order predicate calculus. A
SEQUEL user is presented with a consistent set of keyword
English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to
compose these basic templates in a structured manner in
order to form more complex queries. SEQUEL is intended
as a data base sublanguage for both the professional
programmer and the more infrequent data base user.”



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

SQL: Structured Query Language
• Declarative: says what, not how

– For the most part

• Originally based on relational model/calculus
– Now industry standards: SQL-86, SQL-92, SQL:1999 (-2011)
– Various degrees of adoption

• Capabilities
– Data Definition (DDL): schema structure
– Data Manipulation (DML): add/update/delete
– Transaction Management: begin/commit/rollback
– Data Control: grant/revoke
– Query
– Configuration
…

Good reference: http://www.w3schools.com/sql

1.18.2016

SQL: Part 1

4



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Simplest Query Form

SELECT *
FROM <table name>;

Gets all the attributes for all the rows in the 
specified table. Result set order is arbitrary.

1.18.2016

SQL: Part 1

5



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Your First Query!

Get all information about all artists

1.18.2016

SQL: Part 1

6

SELECT * 
FROM artist;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Attribute Control

SELECT <attribute list>
FROM <table name>;

Defines the columns of the result set. All 
rows are returned. Result set order is 
arbitrary.

1.18.2016

SQL: Part 1

7



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Attribute List
• Comma separated

• As we saw, to get all fields in the table, use *
SELECT * FROM employee;

• To rename a field in the result, use AS
SELECT FirstName AS fname, LastName AS lname FROM
employee;

• Field can be the result of an expression on one/more fields 
(available functions depend upon DBMS), usually rename
SELECT *, (UnitPrice*Quantity) AS cost 
FROM invoiceline;

1.18.2016

SQL: Part 1

8



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Basic Queries (1)

Get all artist names

1.18.2016

SQL: Part 1

9

SELECT Name 
FROM artist;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Basic Queries (2)

Get all employee names (first & last), with their full address info 
(address, city, state, zip, country)

1.18.2016

SQL: Part 1

10

SELECT FirstName, LastName, Address, City, State, PostalCode, Country 
FROM employee;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Basic Queries (3)

Get all invoice line(s) with invoice, unit price, 
quantity

1.18.2016

SQL: Part 1

11

SELECT InvoiceId, UnitPrice, Quantity 
FROM invoiceline;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Choosing Rows to Include

SELECT <attribute list>
FROM <table name>
[WHERE <condition list>];

Defines the columns of the result set. Only 
those rows that satisfy the conditions are 
returned. Result set order is arbitrary.

1.18.2016

SQL: Part 1

12



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Condition List ~ Boolean Expression
Clauses () separated by AND/OR

1.18.2016

SQL: Part 1

13

Operator Meaning Example
= Equal	to InvoiceId = 2

<> Not	equal	to Name <> 'U2'

< or > Less/Greater	than UnitPrice < 5

<= or >= Less/Greater	than	or	equal	to UnitPrice >= 0.99

LIKE Matches	pattern PostalCode LIKE 'T2%'

IN Within a	set City IN ('Calgary', 'Edmonton')

IS or IS NOT Compare	to	NULL ReportsTo IS NULL

BETWEEN Inclusive	range	(esp.	dates) UnitPrice BETWEEN 0.99 AND 1.99



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Conditional Query (1)

Get the billing country of all invoices totaling more than $10

1.18.2016

SQL: Part 1

14

SELECT BillingCountry
FROM invoice
WHERE Total>10;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Conditional Query (2)

Get all information about tracks whose name contains the word 
“Rock”

1.18.2016

SQL: Part 1

15

SELECT * 
FROM track
WHERE Name LIKE '%Rock%';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Conditional Query (3)

Get the name (first, last) of all non-boss employees in Calgary 
(ReportsTo is NULL for the boss).

1.18.2016

SQL: Part 1

16

SELECT FirstName, LastName
FROM employee
WHERE ( ReportsTo IS NOT NULL ) AND ( City = 'Calgary' );



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Non-Standard Functions
• SQLite

– http://sqlite.org/lang.html

• MySQL 
– http://dev.mysql.com/doc/refman/5.0/en/func-op-summary-ref.html

Example: Concatenate fields
• SQLite

– SELECT (field1 || field2) AS field3
• MySQL 

– SELECT CONCAT(field1, field2) AS field3

1.18.2016

SQL: Part 1

17



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Complex Output Query (SQLite)

Get all German invoices greater than $1, output the city using the 
column header “german_city” and “total” prepending $ to the total

1.18.2016

SQL: Part 1

18

SELECT BillingCity AS german_city, ( '$' || Total ) AS total
FROM invoice
WHERE ( BillingCountry = 'Germany' ) AND ( Total > 1 );



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Complex Output Query (MySQL)

Get all German invoices greater than $1, output the city using the 
column header “german_city” and “total” prepending $ to the total

1.18.2016

SQL: Part 1

19

SELECT BillingCity AS german_city, CONCAT( '$', Total ) AS total
FROM invoice
WHERE ( BillingCountry = 'Germany' ) AND ( Total > 1 );



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Ordering Output
SELECT <attribute list>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

Defines the columns of the result set. Only 
those rows that satisfy the conditions are 
returned. Result set order is optionally 
defined.

1.18.2016

SQL: Part 1

20



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Attribute Order List
• Comma separated list

• Format: <attribute name> [Order]
– Order can be ASC or DESC
– Default is ASC

Example: order all employee information by last name 
(alphabetical), then first name (alphabetical), then birthdate 
(youngest first)

SELECT *
FROM employee
ORDER BY LastName, FirstName ASC, BirthDate DESC;

1.18.2016

SQL: Part 1

21



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Ordering Query

Get all invoice info from the USA with greater than or equal to 
$10 total, ordered by the total (highest first), and then by state 
(alphabetical), then by city (alphabetical)

1.18.2016

SQL: Part 1

22

SELECT * 
FROM invoice
WHERE ( BillingCountry = 'USA' ) AND ( Total >= 10 )
ORDER BY Total DESC, BillingState ASC, BillingCity;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Set vs. Bag/Multiset
By default, RDBMSs treat results like 
bags/multisets (i.e. duplicates allowed)
• Use DISTINCT to remove duplicates

SELECT [DISTINCT] <attribute list>
FROM <table name>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

1.18.2016

SQL: Part 1

23



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Example

1.18.2016

SQL: Part 1

24

SELECT BillingState
FROM invoice 
WHERE BillingCountry='USA'
ORDER BY BillingState;

SELECT DISTINCT BillingState
FROM invoice 
WHERE BillingCountry='USA'
ORDER BY BillingState;

vs.



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Set Operations
Use UNION, INTERSECT, EXCEPT/MINUS to 
combine results from queries

– Fields must match exactly in both results
– By default, set handling

• Use ALL after to provide multiset
– Support is spotty here

1.18.2016

SQL: Part 1

25

R1 UNION R2 R1 INTERSECT R2 R1 MINUS R2 R2 MINUS R1

R2R1 R1 R2 R1 R2 R2R1



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (1)

Get all Canadian cities in which customers live  
(call result “city”, i.e. lowercase)

1.18.2016

SQL: Part 1

26

SELECT City AS city
FROM customer
WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (2)

Get all Canadian cities in which employees live  
(call result “city”, i.e. lowercase)

1.18.2016

SQL: Part 1

27

SELECT City AS city
FROM employee
WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (3)

Get all Canadian cities in which employees OR 
customers live (including duplicates)

1.18.2016

SQL: Part 1

28

SELECT City AS city FROM customer WHERE Country = 'Canada'
UNION ALL
SELECT City AS city FROM employee WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (4)

Get all Canadian cities in which employees OR 
customers live (excluding duplicates)

1.18.2016

SQL: Part 1

29

SELECT City AS city FROM customer WHERE Country = 'Canada'
UNION
SELECT City AS city FROM employee WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (5)

Get all Canadian cities in which employees AND customers live 
(excluding duplicates)
[no MySQL support]

1.18.2016

SQL: Part 1

30

SELECT City AS city FROM customer WHERE Country = 'Canada'
INTERSECT
SELECT City AS city FROM employee WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Combining Queries (6)

All Canadian cities in which customers live BUT employees do not 
(excluding duplicates)
[no MySQL support]

1.18.2016

SQL: Part 1

31

SELECT City AS city FROM customer WHERE Country = 'Canada'
EXCEPT
SELECT City AS city FROM employee WHERE Country = 'Canada';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Joining Multiple Tables
• SQL supports two methods of joining tables, 

both of which expand the FROM clause
– Basic idea: take Cartesian product of rows, filter

• The first is called a “soft join” and is older and 
less expressive
– Not recommended
– Not covered in detail

• The second uses the JOIN keyword and 
supports more functionality

1.18.2016

SQL: Part 1

32



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Intuition: Cartesian Product, Filter (1)

1.18.2016

SQL: Part 1

33

a b

x 1

y 2

z 3

ALPHA

BETA
c d

x i

y ii

ALPHA X	BETA

Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

x 1 y ii

y 2 x i

y 2 y ii

z 3 x i

z 3 y ii



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Intuition: Cartesian Product, Filter (2)

1.18.2016

SQL: Part 1

34

a b

x 1

y 2

z 3

ALPHA

BETA
c d

x i

y ii

ALPHA X	BETA |	ALPHA.A =	BETA.C

Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

x 1 y ii

y 2 x i

y 2 y ii

z 3 x i

z 3 y ii

Alpha.a Alpha.b Beta.c Beta.d

x 1 x i

y 2 y ii



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Simple Join

1.18.2016

SQL: Part 1

35

Name SSN Phone Address Age GPA

Ben	Bayer 305-61-2435 555-1234 1	Foo	Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2	Bar	Court 25 3.53

Barbara	Benson 533-69-1238 555-6758 3	Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASSGoal: find the GPA of students in MATH650
1. Find all SSN in table Class where Class=MATH650
2. Find all GPA in table Student where SSN=#1

Approach: cross all rows in STUDENT with all rows in 
CLASS and keep the Student(GPA) of those where 
STUDENT(SSN)=CLASS(SSN) and
CLASS(Class)=MATH650

GPA

3.21

3.25



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Simple Join - JOIN

1.18.2016

SQL: Part 1

36

Name SSN Phone Address Age GPA

Ben	Bayer 305-61-2435 555-1234 1	Foo	Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2	Bar	Court 25 3.53

Barbara	Benson 533-69-1238 555-6758 3	Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in 
CLASS and keep the GPA of those where 
STUDENT(SSN)=CLASS(SSN) and 
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the GPA of students in MATH650

GPA

3.21

3.25



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Simple Join - Soft

1.18.2016

SQL: Part 1

37

Name SSN Phone Address Age GPA

Ben	Bayer 305-61-2435 555-1234 1	Foo	Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2	Bar	Court 25 3.53

Barbara	Benson 533-69-1238 555-6758 3	Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASSGoal: find the GPA of students in MATH650
Approach: cross all rows in STUDENT with all rows in 
CLASS and keep the GPA of those where 
STUDENT(SSN)=CLASS(SSN) and 
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT, CLASS
WHERE STUDENT.SSN=CLASS.SSN AND
CLASS.Class='MATH650';

Soft	Joins	(older	style)	intermix	
row	filtration	with	
table	join	conditions

GPA

3.21

3.25



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

General Syntax
SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[ORDER BY <attribute-order list>];

Table List
(T1 <join type> T2 [ON <condition list>])

<join type> T3 [ON <condition list>]…

1.18.2016

SQL: Part 1

38



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Join Types

[INNER] JOIN Row must exist in both tables

LEFT [OUTER] JOIN Row must at least exist in the table to the left
(padded with NULL)

RIGHT [OUTER] JOIN Row must exist at least in the table to the right
(padded with NULL)

FULL OUTER JOIN Row exists in either table
(padded with NULL)

1.18.2016

SQL: Part 1

39



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Join Type Example (1)

1.18.2016

SQL: Part 1

40

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT * 
FROM Alpha INNER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

y 2 y ii



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Join Type Example (2)

1.18.2016

SQL: Part 1

41

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT * 
FROM Alpha LEFT OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

x 1 NULL NULL

y 2 y ii

z 3 NULL NULL



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Join Type Example (3)

1.18.2016

SQL: Part 1

42

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT * 
FROM Alpha RIGHT OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

y 2 y ii

NULL NULL w -



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Join Type Example (4)

1.18.2016

SQL: Part 1

43

a b

x 1

y 2

z 3

ALPHA

BETA
c d

w -

y ii

SELECT * 
FROM Alpha FULL OUTER JOIN Beta ON
Alpha.a=Beta.c

Alpha.a Alpha.b Beta.c Beta.d

x 1 NULL NULL

y 2 y ii

z 3 NULL NULL

NULL NULL w -



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Notes on Joins
• When dealing with multiple tables, it is advised to use full 

attribute addressing (table.attribute) to avoid confusion
– Tip: when listing the table name, give it a shortcut

SELECT * FROM table1 t1

• NATURAL
– Optional shortcut if joining attribute(s) have same name(s) in 

both tables

• Support/syntax can be spotty
– Particularly full outer, natural

• When joining, the new set of available attributes (*) is the 
concatenation of the attributes from both tables

1.18.2016

SQL: Part 1

44



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Exploring Joins (1)

Get the cross product of genres and media types

1.18.2016

SQL: Part 1

45

SELECT *
FROM genre INNER JOIN mediatype;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Exploring Joins (2)

Get all track information, with the appropriate genre name and media 
type name, for all jazz tracks where Miles Davis helped compose

1.18.2016

SQL: Part 1

46

SELECT *
FROM (track t INNER JOIN mediatype mt ON t.MediaTypeId=mt.MediaTypeId)
INNER JOIN genre g ON t.GenreId=g.GenreId
WHERE g.Name='Jazz' AND t.Composer LIKE '%Miles Davis%';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Advanced Joins (1)

Get all artist information for those whose name 
begins with ‘Black’, sort by name (alphabetically)

1.18.2016

SQL: Part 1

47

SELECT * 
FROM artist 
WHERE Name LIKE 'Black%'
ORDER BY Name ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Advanced Joins (2)

Get all artist AND album information for those artists whose 
name begins with ‘Black’ (don’t include those without albums), 
sort by artist name, then album name

1.18.2016

SQL: Part 1

48

SELECT * 
FROM artist art INNER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%'
ORDER BY art.Name ASC, alb.Title ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Advanced Joins (3)

Get all artist AND album information for those artists whose 
name begins with ‘Black’ (do include those without albums!), sort 
by artist name, then album title

1.18.2016

SQL: Part 1

49

SELECT * 
FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%'
ORDER BY art.Name, alb.Title;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Advanced Joins (4)

Get all artist AND album information for those artists whose name 
begins with ‘Black’ (do include those without albums!), provide only a 
single correct ArtistId, sort by artist name, then album title

1.18.2016

SQL: Part 1

50

SELECT art.ArtistId, art.Name, alb.AlbumId, alb.Title
FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'Black%'
ORDER BY art.Name, alb.Title;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Advanced Joins (5)

Get track id, track name, composer, unit price, album title, media 
type name, and genre for the track titled “Give Me Novacaine”

1.18.2016

SQL: Part 1

51

SELECT t.TrackId, t.Name AS tName, t.Composer, t.UnitPrice, 
a.Title, m.Name AS mName, g.Name AS gName

FROM ((track t INNER JOIN album a ON t.AlbumId=a.AlbumId) 
INNER JOIN mediatype m ON t.MediaTypeId=m.MediaTypeId)
INNER JOIN genre g ON t.GenreId=g.GenreId
WHERE t.Name='Give Me Novacaine';



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Aggregate Function
• An aggregate function takes the value of a 

field (or an expression over multiple fields) for 
a set of rows and outputs a single value

• When used alone, an aggregate function 
reduces a set of rows to a single row

• Common aggregate functions include       
MAX, MIN, SUM, AVG, COUNT

1.18.2016

SQL: Part 1

52



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Continuing Our Example

1.18.2016

SQL: Part 1

53

Name SSN Phone Address Age GPA

Ben	Bayer 305-61-2435 555-1234 1	Foo	Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2	Bar	Court 25 3.53

Barbara	Benson 533-69-1238 555-6758 3	Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in 
CLASS and keep the GPA of those where 
STUDENT(SSN)=CLASS(SSN) and 
CLASS(Class)=MATH650

SELECT STUDENT.GPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the GPA of students in MATH650

GPA

3.21

3.25



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Now Take the Average!

1.18.2016

SQL: Part 1

54

Name SSN Phone Address Age GPA

Ben	Bayer 305-61-2435 555-1234 1	Foo	Lane 19 3.21

Chung-cha Kim 422-11-2320 555-9876 2	Bar	Court 25 3.53

Barbara	Benson 533-69-1238 555-6758 3	Baz Blvd 19 3.25

STUDENT

SSN Class

305-61-2435 COMP355

422-11-2320 COMP355

533-69-1238 MATH650

305-61-2435 MATH650

422-11-2320 BIOL110

CLASS
Approach: cross all rows in STUDENT with all rows in 
CLASS and keep the GPA of those where 
STUDENT(SSN)=CLASS(SSN) and 
CLASS(Class)=MATH650, average result set

SELECT AVG(STUDENT.GPA) AS aGPA
FROM STUDENT INNER JOIN CLASS
ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650';

Goal: find the average GPA of students in MATH650

aGPA

3.23



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Other Examples
• Get the number of tracks for an album

– COUNT(*) = number of rows
– COUNT(field) = number of non-NULL values
– COUNT(DISTINCT field) = number of distinct values of a field

• Compute the total cost of an album

• Get the min/max/average track unit price overall

1.18.2016

SQL: Part 1

55

SELECT MIN(UnitPrice) AS min_price FROM track;
SELECT MAX(UnitPrice) AS max_price FROM track;
SELECT AVG(UnitPrice) AS avg_price FROM track;

SELECT MIN(UnitPrice) AS min_price, MAX(UnitPrice) AS max_price, 
AVG(UnitPrice) AS avg_price FROM track;

SELECT COUNT(*) AS num_tracks FROM track WHERE AlbumId=1;

SELECT SUM(UnitPrice) AS total_cost FROM track WHERE AlbumId=1;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Grouping
The GROUP BY statement allows you to define subgroups for aggregate 
functions. The GROUP BY attribute list should be a subset of SELECT list.

SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[GROUP BY <attribute list>]
[ORDER BY <attribute-order list>];

Example: track price stats by media type

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price, 
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId
GROUP BY mt.Name
ORDER BY avg_price DESC, mt.Name ASC;

1.18.2016

SQL: Part 1

56



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Conceptually

1.18.2016

SQL: Part 1

57

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price, 
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId
GROUP BY mt.Name
ORDER BY avg_price DESC, mt.Name ASC;

SELECT * 
FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeId
ORDER BY mt.Name ASC;

…

GROUP BY



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Grouped Aggregation (1)

Get the average, sum, and number of all US invoices, grouped 
by city and state. Order by average cost (greatest first), then 
state, then city.

1.18.2016

SQL: Part 1

58

SELECT BillingCity, BillingState, 
AVG(Total) AS avg_total, SUM(Total) AS sum_total, COUNT(*) AS ct

FROM invoice
WHERE BillingCountry='USA'
GROUP BY BillingCity, BillingState
ORDER BY avg_total DESC, BillingState ASC, BillingCity ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Grouped Aggregation (2)

Using only the invoiceline table, compute the total cost of each 
order, sorted by total (greatest first), then invoice id (smallest 
first).

1.18.2016

SQL: Part 1

59

SELECT InvoiceId, SUM(UnitPrice*Quantity) AS total
FROM invoiceline
GROUP BY InvoiceId
ORDER BY total DESC, InvoiceId ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Grouped Aggregation (3)

Generate a ranked list of Queen’s best selling tracks. Display the track 
id, track name, and album name, along with number of tracks sold, 
sorted by tracks sold (greatest first), then by track name (alphabetical).

1.18.2016

SQL: Part 1

60

SELECT invoiceline.TrackId, track.Name, album.Title, 
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)
INNER JOIN album ON track.AlbumId=album.AlbumId)
INNER JOIN artist ON album.ArtistId=artist.ArtistId
WHERE artist.Name='Queen'
GROUP BY invoiceline.TrackId
ORDER BY num_sold DESC, track.Name ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

HAVING
The HAVING statement allows you to place 
constraint(s), similar to WHERE, that use 
aggregate functions (separate by AND/OR)

SELECT [DISTINCT] <attribute list>
FROM <table list>
[WHERE <condition list>]
[GROUP BY <attribute list>]
[HAVING <condition list>]
[ORDER BY <attribute-order list>];

1.18.2016

SQL: Part 1

61



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Aggregation (4)

Generate a ranked list of Queen’s best selling tracks. Display the track id, track 
name, and album name, along with number of tracks sold, sorted by tracks sold 
(greatest first), then by track name (alphabetical). Only show those tracks that 
have sold at least twice.

1.18.2016

SQL: Part 1

62

SELECT invoiceline.TrackId, track.Name, album.Title, 
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)
INNER JOIN album ON track.AlbumId=album.AlbumId)
INNER JOIN artist ON album.ArtistId=artist.ArtistId
WHERE artist.Name='Queen'
GROUP BY invoiceline.TrackId
HAVING SUM(invoiceline.Quantity)>=2
ORDER BY num_sold DESC, track.Name ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Query in a Query
A feature of SQL is its composability – the 
result(s) of one query, which is a set of 
rows/columns, can be used by another
• Termed inner/nested query or subquery

Most common locations
• SELECT (returns a value for an attribute)
• FROM (becomes a “table” to query/join)
• WHERE (serves as part of a constraint)

1.18.2016

SQL: Part 1

63



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Notes about Subqueries
• Tip: when designing subqueries, work inside out –

come up with each query separately, then piece 
them together
– Helps with debugging

• A correlated subquery is an inner query that 
references a value from an outer query
– The inner query will be run once for every tuple of the 

outer query (i.e. slow!)

• Don’t use ORDER BY in inner queries (some 
DBMSs don’t allow, typically wasteful anyhow)

1.18.2016

SQL: Part 1

64



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Example: WHERE

Get all track information for the album Jagged 
Little Pill (do not use a join)

1.18.2016

SQL: Part 1

65

SELECT t.* 
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId
FROM album a 
WHERE a.Title='Jagged Little Pill'

);

Notes
1. The	subquery needs	to	

return	a	single value	for	
the	=	to	make	sense

2. Not	correlated!



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

How the Query Works Conceptually

1.18.2016

SQL: Part 1

66

SELECT t.* 
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId
FROM album a 
WHERE a.Title='Jagged Little Pill'

);

SELECT t.* 
FROM track t
WHERE t.AlbumId = 6;

Inner	Query



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Notes about Subqueries and WHERE
For most operators, the subquery will need to return 
a single value

Other operators:
• [NOT] IN = query returns a single column of options
• [NOT] EXISTS = checks if query returns at least a 

single row
• <op> ALL = true if <op> returns true for all results 

(single field)
• <op> ANY/SOME = true if <op> returns true for any

result (single field)

1.18.2016

SQL: Part 1

67



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Nesting Example: WHERE

Get all track information for the artist Queen (do not use a join)

1.18.2016

SQL: Part 1

68

SELECT t.* 
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (

SELECT art.ArtistId
FROM artist art 
WHERE art.Name='Queen'

)
);

Notes
1. Not	correlated!



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

How the Query Works Conceptually

1.18.2016

SQL: Part 1

69

SELECT t.* 
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (

SELECT art.ArtistId
FROM artist art 
WHERE art.Name='Queen'

)
);

SELECT t.* 
FROM track t
WHERE t.AlbumId IN (

SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = 51

);

SELECT t.* 
FROM track t
WHERE t.AlbumId IN (36, 185, 186);



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Example: SELECT

For each artist starting with Santana, get the number of albums, sorted 
by count (greatest first), then artist (alphabetical)

1.18.2016

SQL: Part 1

70

SELECT art.Name AS artist_name, 
(

SELECT COUNT(*) 
FROM album alb
WHERE alb.ArtistId=art.ArtistId

) AS album_ct
FROM artist art 
WHERE art.Name LIKE 'Santana%'
ORDER BY album_ct DESC, art.Name;

Notes
1. The	subquery needs	to	

return	a	single value	for	
each	tuple	generated

2. Correlated	subquery!



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

How the Query Works Conceptually

1.18.2016

SQL: Part 1

71

SELECT art.Name AS artist_name, 
(

SELECT COUNT(*) 
FROM album alb
WHERE alb.ArtistId=art.ArtistId

) AS album_ct
FROM artist art 
WHERE art.Name LIKE 'Santana%'
ORDER BY album_ct DESC, art.Name;

SELECT * 
FROM artist art 
WHERE art.Name LIKE 'Santana%';

Correlated - one	query	per	row	to	
fill	 in	album_ct column!

SELECT COUNT(*) 
FROM album alb
WHERE alb.ArtistId=59;

=60;
…



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

[Better] Example: FROM

For each artist starting with Santana, get the number of albums, sorted 
by count (greatest first), then artist (alphabetical)

1.18.2016

SQL: Part 1

72

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM 
(

SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana%'

) q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

How the Query Works Conceptually

1.18.2016

SQL: Part 1

73

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM 
(

SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana%'

) q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;

q1

SELECT artist_name, COUNT(q1.AlbumId) AS album_ct
FROM q1
GROUP BY artist_id
ORDER BY album_ct DESC, artist_name;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Notes about Subqueries and FROM
• When using one or more subqueries in the 
FROM clause, remember two important items
– The subquery must be enclosed within 

parentheses
– The subquery must have a name (e.g. q1 in the 

previous example), which is indicated just after 
the close parenthesis

• The name can be used to refer to columns in 
the subquery via the dot notation (e.g. 
subqueryname.columnname) – this is 
required if the column name is not unique

1.18.2016

SQL: Part 1

74



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Nesting Example: FROM

Find the minimum, maximum, and average number of tracks ordered per customer (across all invoices).    
Also include the total number of customers.

1.18.2016

SQL: Part 1

75

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg_q,
COUNT(*) AS num_customers

FROM
(SELECT q1.CustomerId, SUM(Quantity) AS sum_q
FROM

(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il
) q1

GROUP BY q1.CustomerId
) q2;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

How the Query Works Conceptually

1.18.2016

SQL: Part 1

76

SELECT MIN(q2.sum_q) AS min_q, MAX(q2.sum_q) AS max_q, AVG(q2.sum_q) AS avg_q,
COUNT(*) AS num_customers

FROM
(SELECT q1.CustomerId, SUM(Quantity) AS sum_q
FROM

(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il
) q1

GROUP BY q1.CustomerId
) q2;

q1q2

… …



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Subquery (1)

Find the highest spending customers: get a ranked list of customers (first name, last name) who have spent at 
least $40, sorted by amount spent (greatest first), then last name, then first name

1.18.2016

SQL: Part 1

77

SELECT * FROM (
SELECT c.FirstName, c.LastName, (

SELECT SUM(i.Total) 
FROM invoice i 
WHERE c.CustomerId=i.CustomerId

) AS total_spent
FROM customer c) q1

WHERE q1.total_spent>=40
ORDER BY q1.total_spent DESC, q1.LastName ASC, q1.FirstName ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Subquery (2)

Create a report of the distribution of tracks into genres. The result set should list each 
genre by name, the number of tracks of that genre, and the percentage of overall tracks 
for that genre. The rows should be sorted by the percentage (greatest first), then genre 
name (alphabetically).

1.18.2016

SQL: Part 1

78

SELECT x.Name AS g_name, x.g_ct AS g_ct, (100.0 * g_ct / ct) AS g_percentage
FROM (SELECT *, (SELECT COUNT(*) FROM track t1 WHERE t1.GenreId=g.GenreId) AS g_ct, 

(SELECT COUNT(*) FROM track t2) AS ct 
FROM genre g) x

ORDER BY g_percentage DESC, g_name ASC;



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Inserting Rows
• Insert all attributes, in same order as table

INSERT INTO table_name
VALUES (a, b, … n);

• Insert a subset of attributes (not assigned = NULL)
INSERT INTO table_name (a1, a2, … an) 
VALUES (a, b, … n)[, (a2, b2, … n2), …];

• Insert via query
INSERT INTO table_name (a1, a2, … an) 
SELECT a1, a2, … an FROM …

1.18.2016

SQL: Part 1

79



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Updating Rows
General syntax
UPDATE table_name
SET <attribute=value list>
[WHERE <condition list>];

• Attribute=value is comma-separated
• Condition list may result in more than one 

rows being updated via a single statement

1.18.2016

SQL: Part 1

80



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Deleting Rows
General syntax
DELETE FROM table_name
[WHERE <condition list>];

• Condition list may result in more than one 
rows being deleted via a single statement

• No condition = clear table (truncate)

1.18.2016

SQL: Part 1

81



Wentworth Institute of Technology COMP2670 – Databases    | Spring 2016    | Derbinsky

Summary
• You have now learned most of the DML 

components of SQL
– SELECT: get stuff out
– INSERT: add row(s)
– UPDATE: change existing row(s)
– DELETE: remove row(s)

• While using SELECT you learned about attribute 
ordering/renaming (AS), row filtering (WHERE) and 
sorting (ORDER BY), table joining (FROM + JOIN/ON), 
grouped aggregation (GROUP BY + FN + HAVING), 
set operations on multiple queries (e.g. UNION), 
and subqueries (SELECT within SELECT)

1.18.2016

SQL: Part 1

82


