Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

SQL: Part 1

L ecture 3

.9

. SQL: Part 1

1.18.2016 L

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Outline

1. Context
2. Getting Data Out: SELECT

3. Changing Data: INSERT, UPDATE, DELETE

SQL: Part 1
1.18.2016 2

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

In the Beginning...

Chamberlin, Donald D., and Raymond F. Boyce. "SEQUEL.: A structured
English query language." Proceedings of the 1974 ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and control. ACM, 1974.

“In this paper we present the data manipulation facility for

a structured English query language (SEQUEL) which can be

used for accessing data in an integrated relational data

base. Without resorting to the concepts of bound variables e o e o
and quantifiers SEQUEL identifies a set of simple operations R
on tabular structures, which can be shown to be of |
equivalent power to the first order predicate calculus. A
SEQUEL user is presented with a consistent set of keyword
English templates which reflect how people use tables to
obtain information. Moreover, the SEQUEL user is able to e miom i35, 37,
compose these basic templates in a structured manner in
order to form more complex queries. SEQUEL is intended
as a data base sublanguage for both the professional
programmer and the more infrequent data base user.”

.9

. SQL:Part 1

1.18.2016 3

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

SQL: Structured Query Language

« Declarative: says what, not how
— For the most part

« Originally based on relational model/calculus
— Now industry standards: SQL-86, SQL-92, SQL:1999 (-2011)
— Various degrees of adoption

« Capabilities
— Data Definition (DDL): schema structure
— Data Manipulation (DML): add/update/delete
— Transaction Management: begin/commit/rollback
— Data Control: grant/revoke
— Query
— Configuration

Good reference: http://www.w3schools.com/sql

.9

. SQL:Part 1

1.18.2016 4

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Simplest Query Form

SELECT *
FROM <table name>;

Gets all the attributes for all the rows in the
specified table. Result set order is arbitrary.

SQL: Part 1

1.18.2016 S

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 Derbinsky

Your First Query!

Artist Album Track MediaType
Artistld ﬁ Albumid Trackld
Name Title Name
Artistld AlbumIid
MediaTypeld
Genreld —t
Composer Genre
Playlist PlaylistTrack Milliseconds Genreld
Playlistid Playlistid Bytes Name
UnitPrice
InvoiceLine
Employee In d
Employeeld }€— Invoiceld
LastName Customer Trackld —
FirstName Customerld UnitPrice
Title FirstName Quantity
ReportsTo LastName
BirthDate Company Invoice
HireDate Address In: d
Address City Customerld
City State InvoiceDate
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Get all information about all artists

SELECT *
FROM artist;

SQL: Part 1

1.18.2016

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Attribute Control

SELECT <attribute list>
FROM <table name>;

Defines the columns of the result set, All
rows are returned. Result set order is
arbitrary.

SQL: Part 1
1.18.2016 7

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Attribute List

« Comma separated

* As we saw, to get all fields in the table, use *
SELECT * FROM employee;

 To rename a field in the result, use AS

SELECT FirstName AS fname, LastName AS lname FROM
employee;

* Field can be the result of an expression on one/more fields
(available functions depend upon DBMS), usually rename

SELECT *, (UnitPrice*Quantity) AS cost
FROM invoiceline;

.9

. SQL: Part 1

1.18.2016 8

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 Derbinsky

Basic Queries (1)

Artist Album Track MediaType
Artistld ﬁ Albumid Trackld
Name Title Name
Artistld AlbumIid
MediaTypeld
Genreld —t
Composer Genre
Playlist PlaylistTrack Milliseconds Genreld
Playlistid Playlistid Bytes Name
UnitPrice
InvoiceLine
Employee In d
Employeeld }€— Invoiceld
LastName Customer Trackld —
FirstName Customerld UnitPrice
Title FirstName Quantity
ReportsTo LastName
BirthDate Company Invoice
HireDate Address In: d
Address City Customerld
City State InvoiceDate
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Get all artist names

SELECT Name
FROM artist;

SQL: Part 1

1.18.2016

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Get all employee names (first & last), with their full address info
(address, city, state, zip, country)

SELECT FirstName, LastName, Address, City, State, PostalCode, Country
FROM employee;

.9
L]

1.18.2016 10

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Get all invoice line(s) with invoice, unit price,
quantity

SELECT Invoiceld, UnitPrice, Quantity
FROM invoiceline;

.9
L]

SQL: Part 1
1.18.2016 11

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Choosing Rows to Include

SELECT <attribute list>
FROM <table name>
[IWHERE <condition list>];

Defines the columns of the result set. Only
those rows that satisfy the conditions are
returned. Result set order is arbitrary.

SQL: Part 1

1.18.2016 12

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Condition List ~ Boolean Expression
Clauses () separated by AND/OR

Operator Meaning Example
= Equal to Invoiceld = 2
<> Not equal to Name <> 'U2'
< or > Less/Greater than UnitPrice < 5
<= Oor >= Less/Greater than or equal to UnitPrice »>= 0.99
LIKE Matches pattern PostalCode LIKE 'T2%°
IN Within a set City IN ('Calgary', 'Edmonton')
IS or IS NOT Compare to NULL ReportsTo IS NULL
BETWEEN Inclusive range (esp. dates) UnitPrice BETWEEN ©.99 AND 1.99
M SQL:Part 1

L4

1.18.2016 13

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Conditional Query (1)

MediaType

Get the billing country of all invoices totaling more than $10

SELECT BillingCountry
FROM invoice
WHERE Total>10;

.9
L]

1.18.2016 14

SQL: Part 1

COMP2670 — Databases

Wentworth Institute of Technology

L]

Spring 2016

Conditional Query (2)

Album

o
Employeeld }€— Invoice \d
LastName Customer Trackld —
FirstNam Customer!| Id UnitPrice
Title FirstName Quantity
ReportsT: LastName
BirthDaty Company Invoice
HireDate Addres: Invoice! Id
Addre City Customer 1d
City Sta InvoiceDate
Stat. Country BillingAddress
Country PostalCode BillingCity
PostalCod: Phone BillingState
Phone Fa. BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Derbinsky

Get all information about tracks whose name contains the word

“ROCk”

SELECT *
FROM track
WHERE Name LIKE

L
(]

1.18.2016

SQL: Part 1

"%Rock%’ 3

15

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Conditional Query (3)

InvoiceLine
nnnnnnnnnnnnn

lllllllll
TTTTTTT

UnitPrice

Quantity

Get the name (first, last) of all non-boss employees in Calgary
(ReportsTo is NULL for the boss).

SELECT FirstName, LastName
FROM employee
WHERE (ReportsTo IS NOT NULL) AND (City = 'Calgary');

.9
L]

1.18.2016 16

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Non-Standard Functions

 SQLite

— http://sqlite.org/lang.html

« MySQL

— http://dev.mysqgl.com/doc/refman/5.0/en/func-op-summary-ref.html

Example: Concatenate fields

« SQLite
— SELECT (fieldl || field2) AS field3
« MySQL
— SELECT CONCAT(fieldl, field2) AS field3

SQL: Part 1

1.18.2016 17

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Complex Output Query (SQLite)

rti Album
cccccccccc
1 Stuttgart $1.98
itle 2 Berlin $1.98
3 Stuttgart $13.86
4 Berlin $1.98
5 Berli $3.96
& Berl $13.86
7 Berl $5.94
s Stutigart $8.91
g Berl $8.91
10 Frankfurt $1.98
11 Frankfurt $13.86
12 Frankfurt $14.91
1a Stuttgart $1.98
14 Stuttgart $3.96
15 Berlin $1.98
16 Berlin $1.98
17 Berlin $13.86
18 Stuttgart $5.94
1o Berli $3.96
20 Berl $5.94
21 Berl $8.91
22 Frankfurt $1.98
23 Frankfurt $3.96
24 Frankfurt $5.94

Get all German invoices greater than $1, output the city using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, ('$' || Total) AS total
FROM invoice
WHERE (BillingCountry = 'Germany') AND (Total > 1);

.9
L]

1.18.2016 18

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Complex Output Query (MySQL)

german_city total
Stuttgart $1.98
Berlin $1.98

Stuttgart $13.86

Berlin $1.98
Berlin $3.96
Berlin $13.86
Berlin $5.94
Stuttgart $8.91
Berlin $8.91

Frankfurt $1.98
Frankfurt $13.86
Frankfurt $14.91
Stuttgart $1.98
Stuttgart $3.96
Berlin $1.98

Berlin $1.98
Berlin $13.86
Stuttgart $5.94
Berlin $3.96
Berlin $5.94
Berlin $8.91

Frankfurt $1.98
Frankfurt $3.96
Frankfurt $5.94

Get all German invoices greater than $1, output the city using the
column header “german_city” and “total” prepending $ to the total

SELECT BillingCity AS german_city, CONCAT('$', Total) AS total
FROM invoice
WHERE (BillingCountry = 'Germany') AND (Total > 1);

.9
L]

1.18.2016 19

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Ordering Output

SELECT <attribute list>

FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Defines the columns of the result set. Only
those rows that satisfy the conditions are
returned. Result set order is optionally
defined.

SQL: Part 1

1.18.2016 20

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Attribute Order List

« Comma separated list

 Format: <attribute name> [Order]
— Order can be ASC or DESC
— Default is ASC

Example: order all employee information by last name
(alphabetical), then first name (alphabetical), then birthdate
(youngest first)

SELECT *
FROM employee
ORDER BY LastName, FirstName ASC, BirthDate DESC;

SQL: Part 1

1.18.2016 21

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 Derbinsky

rdering Query

Artist Album Track MediaType
Artistld Albumid Trackld le— >l MediaTypeld | Invoiceld Customerld InvoiceDate BillingAddress BillingCity BilingState BillingCountry BillingPostalCode Total
W Title Nome [Name 1 299 26 | 2012-08-05 00:00:00 2211 W Berry Street Fort Worth ™ USA 76110 23.86
Artistld Albumid 2 201 25 | 2011-05-29 00:00:00 319 N. Frances Street Madison Wi USA 53703 18.86
MediaTypeld | 3 103 24 | 2010-03-21 00:00:00 162 E Superior Street Chicago IC USA 60611 15.86
Genreld — 4 397 27 1 2013-10-13 00:00:00 1033 N Park Ave Tucson AZ USA 85719 13.86
)) Composer —L Genre 5 26 19 | 2009-04-14 00:00:00 1 Infinite Loop Cupertino CA USA 95014 13.86
:::v::::m :::Y:.I::Lmk :{':'e'ze“’""‘ ! z:::'d | 6 145 16 | 2010-08-23 00:00:00 1600 Amphitheatre Parkway Mountain View CA USA 94043-1351 13.86
UnitPrice 7 124 20 | 2010-06-22 00:00:00 541 Del Medio Avenue Mountain View CA USA 94040-111 13.86
8 320 22| 2012-11-06 00:00:00 120 S Orange Ave Orlando FL USA 32801 13.86
InvoiceLine 9 5 23 2009-01-11 00:00:00 69 Salem Street Boston MA USA 2113 13.86
Employee InvoiceLineld 10 222 21| 2011-08-30 00:00:00 801 W 4th Street Reno NV USA 89503 13.86
Employeeld [€— Invoiceld 1 341 18 | 2013-02-07 00:00:00 627 Broadway New York NY USA 100122612 13.86
LastName Customer Trackid — 12 82 28 | 2009-12-18 00:00:00 3025700 € Salt Lake City uT USA 84102 13.86
Brstiiame ustomend Z:::::: 1 243 17 | 2011-12-01 00:00:00 1 Microsoft Way Redmond WA USA 98052-8300 1386
ReportsTo LastName 14 311 28 | 2012-09-28 00:00:00 3025700 E Salt Lake City ut USA 84102 11.04
BirthDate Company Invoice 15 298 17 [2012-07-31 00:00:00 1 Microsoft Way Redmond WA USA 98052-8300 10.91
HireDate Address Invoiceld
Address City Customerld
City State InvoiceDate
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Get all invoice info from the USA with greater than or equal to
$10 total, ordered by the total (highest first), and then by state
alphabetical), then by city (alphabetical)

SELECT *

FROM invoice

WHERE (BillingCountry = 'USA') AND (Total »>= 10)
ORDER BY Total DESC, BillingState ASC, BillingCity;

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Set vs. Bag/Multiset

By default, RDBMSs treat results like
bags/multisets (i.e. duplicates allowed)

 Use DISTINCT to remove duplicates

SELECT [DISTINCT] <attribute list>
FROM <table name>

WHERE <condition list>]

ORDER BY <attribute-order list>];

SQL: Part 1

1.18.2016

23

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Example

SELECT BillingState

FROM invoice

WHERE BillingCountry='USA’
ORDER BY BillingState;

VS.

SELECT DISTINCT BillingState

FROM invoice
WHERE BillingCountry='USA’
ORDER BY BillingState;

SQL: Part 1

1.18.2016

24

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Set Operations

Use UNION, INTERSECT, EXCEPT/MINUS to
combine results from queries
— Fields must match exactly in both results

— By default, set handling
« Use ALL after to provide multiset

— Support is spotty here

R1 UNION R2 R1INTERSECT R2 R1 MINUS R2 R2 MINUS R1

1.18.2016 25

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Combining Queries (1)

1 Montréal
2 Edmonton

4 Toronto

¢ Halifax
7 Winnipeg
g Yellowknife

nnnnnnnnn

aaaaaaaaaaaaaaaa

Employeeld (€—

rrrrrrrrrrrrrrrrrrr UnitPrice

Tite | | [FirstName Quantity

eeeeeeeeeeeeeeeee

BirthDate Company Invoice

eeee Address Invoiceld
City

ddddddddddddddddd

tttttttttttttttt

.....................
aaaaaaaaaaaaaaaaaaaaaaaaaaa
nnnnnnnnnnnnnnnnnnnnnn
aaaaaaaaaaaaaaaa

Get all Canadian cities in which customers live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM customer
WHERE Country = 'Canada’;

.9
L]

1.18.2016 26

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Combining Queries (2)

city

1 Edmonton
2 Calgary
a Calgary
4 Calgary
5 Calgary
¢ Calgary
7 Lethbridge
g Lethbridge

nnnnnnnnn

aaaaaaaaaaaaaaaa

Employeeld (€—

rrrrrrrrrrrrrrrrrrr UnitPrice
Tite | | [FirstName Quantity
eeeeeeeeeeeeeeeee

BirthDate Company Invoice
eeee Address Invoiceld
sssssss City Customerld
City

tttttttttttttttt

.....................
aaaaaaaaaaaaaaaaaaaaaaaaaaa
nnnnnnnnnnnnnnnnnnnnnn

eeeeeeeeeeeeeeee

Get all Canadian cities in which employees live
(call result “city”, i.e. lowercase)

SELECT City AS city
FROM employee
WHERE Country = 'Canada’;

.9
L]

1.18.2016 27

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Combining Queries (3)

city

1 Montréal
2 Edmonton

4 Toronto
5 Ottawa
¢ Halifax
7 Winnipeg
g Yellowknife
g Edmonton
10 Calgary
11 Calgary
12 Calgary
13 Calgary
14 Calgary
15 Lethbridge
16 Lethbridge

Get all Canadian cities in which employees OR
customers live (including duplicates)

SELECT City AS city FROM customer WHERE Country = 'Canada’
UNION ALL
SELECT City AS city FROM employee WHERE Country = 'Canada’;

.9
L]

1.18.2016 28

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Combining Queries (4)

city

1 Calgary
» Edmonton

3 Halifax

4 Lethbridge
5 Montréal

¢ Ottawa

7 Toronto

g Vancouver
g Winnipeg
10 Yellowknife

nnnnnnnnn

aaaaaaaaaaaaaaaa

Employeeld (€—

rrrrrrrrrrrrrrrrrrr UnitPrice

Tite | | [FirstName Quantity

eeeeeeeeeeeeeeeee

BirthDate Company Invoice

eeee Address Invoiceld
City

ddddddddddddddddd
tttttttttttttttt

.....................
aaaaaaaaaaaaaaaaaaaaaaaaaaa
nnnnnnnnnnnnnnnnnnnnnn
aaaaaaaaaaaaaaaa

Get all Canadian cities in which employees OR
customers live (excluding duplicates)

'Canada’

SELECT City AS city FROM customer WHERE Country

UNION

SELECT City AS city FROM employee WHERE Country ‘Canada’;

.9
L]

1.18.2016 29

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Combining Queries (5)

| 1 Edmonton

Get all Canadian cities in which employees AND customers live
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country = 'Canada’
INTERSECT
SELECT City AS city FROM employee WHERE Country = 'Canada’;

.9

. SQL: Part 1
1.18.2016 30

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016

| Derbinsky

Combining Queries (6)

city

1 Halifax

2 Montréal
3 Ottawa

4 Toronto

5 Vancouver
s Winnipeg
7 Yellowknife

All Canadian cities in which customers live BUT employees do not
(excluding duplicates)

[no MySQL support]

SELECT City AS city FROM customer WHERE Country = 'Canada’
EXCEPT
SELECT City AS city FROM employee WHERE Country = 'Canada’;

.9
L]

1.18.2016

SQL: Part 1

31

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Joining Multiple Tables

« SQL supports two methods of joining tables,
both of which expand the FROM clause

— Basic idea: take Cartesian product of rows, filter

* The first is called a “soft join” and is older and
less expressive

— Not recommended
— Not covered in detall

 The second uses the JOIN keyword and
supports more functionality

SQL: Part 1

1.18.2016 32

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Intuition: Cartesian Product, Filter (1)

ALPHA ALPHA X BETA
IS
X 1 X 1 X i
y 2 X 1 y i
y 3 y 2 X [
y 2 y I
BETA z 3 X i
< | 4 : s y i
X i
y i
M SQL:Part 1

1.18.2016 33

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Intuition: Cartesian Product, Filter (2)

ALPHA ALPHA X BETA | ALPHA.A = BETA.C
EEEE
X 1 X 1 X i
y 2 y 2 Yy i
y 3 y 2 X [
y 2 y i
BETA z 3 X i
< | 4 : ; y i
X i
y i
M SQL:Part 1

1.18.2016 34

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Simple Join

STUDENT

I R N R T K
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
1. Find all SSN in table Class where Class=MATHB50 |G I SIEFES
2. Find all GPA in table Student where SSN=#1 305-61-2435 COMP355

422-11-2320 COMP355

Approach: cross all rows in STUDENT with all rows in

533-69-1238 MATH650
CLASS and keep the Student(GPA) of those where

STUDENT(SSN)=CLASS(SSN) and 305-61-2435 MATH650
CLASS(Class)=MATH650 422-11-2320 BIOL110
A SQL:Part 1

1.18.2016 35

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Simple Join - JOIN

STUDENT

IS R N T T KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLass

Approach: cross all rows in STUDENT with all rows in m

CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN)and e

CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA DSEREEARZES | NilAllED
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650°";

422-11-2320 BIOL110

.9
L]

SQL: Part 1
1.18.2016 36

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Simple Join - Soft

STUDENT

IR NN I T KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLAss
Approach: cross all rows in STUDENT with all rows in m
CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN)and e
CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA
FROM STUDENT, CLASS Soft Joins (older style) intermix
WHERE STUDENT.SSN=CLASS.SSN AND row filtration with

CLASS.Class="MATH650"'; table join conditions

.9
L]

1.18.2016

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

General Syntax

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

ORDER BY <attribute-order list>];

Table List
(T1 <join type> T2 [ON <condition 1list>])
<join type> T3 [ON <condition list>]..

SQL: Part 1

1.18.2016 38

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Join Types

L]

[INNER] 3JOIN Row must exist in both tables

Row must at least exist in the table to the left
LEFT [OUTER] JOIN (padded with NULL)

Row must exist at least in the table to the right
RIGHT [OUTER] JOIN (padded with NULL)

Row exists in either table
FULL OUTER JOIN (padded with NULL)

L]
(]

1.18.2016 39

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Join Type Example (1)

ALPHA SELECT *
_— FROM Alpha INNER JOIN Beta ON
Alpha.a=Beta.c
X 1
, - y 2 y i
BETA
W :
y I
B SQL:Part 1

]

1.18.2016 40

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Join Type Example (2)

ALPHA SELECT *
_— FROM Alpha LEFT OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
y) Alpha.b
, 3 NULL NULL
y 2 y i
BETA 7 3 NULL NULL
" _
y i
M SQL:Part 1

1.18.2016 41

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Join Type Example (3)

ALPHA SELECT *
_— FROM Alpha RIGHT OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
y 2
z 3 y 2 v !
NULL NULL w -
BETA
W _
y i
M SQL:Part 1

]

1.18.2016 42

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Join Type Example (4)

ALPHA SELECT *
_— FROM Alpha FULL OUTER JOIN Beta ON
Alpha.a=Beta.c
X 1
, 3 NULL NULL
y 2 y i
BETA 7 3 NULL NULL
| 4 R T ¥ '
" _
y i
M SQL:Part 1

1.18.2016 43

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Notes on Joins

 When dealing with multiple tables, it is advised to use full
attribute addressing (table.attribute) to avoid confusion

— Tip: when listing the table name, give it a shortcut
SELECT * FROM tablel t1

« NATURAL

— Optional shortcut if joining attribute(s) have same name(s) in
both tables

« Support/syntax can be spotty
— Particularly full outer, natural

 When joining, the new set of available attributes (*) is the
concatenation of the attributes from both tables

SQL: Part 1

1.18.2016 44

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Get the cross product of genres and media types

SELECT *
FROM genre INNER JOIN mediatype;

.9
L]

1.18.2016 45

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Exploring Joins (2)

Get all track information, with the appropriate genre name and media
type name, for all jazz tracks where Miles Davis helped compose

SELECT *

FROM (track t INNER JOIN mediatype mt ON t.MediaTypeId=mt.MediaTypeId)
INNER JOIN genre g ON t.Genreld=g.Genreld

WHERE g.Name='Jazz' AND t.Composer LIKE '%Miles Davis’k';

.9

. SQL:Part 1
1.18.2016

46

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

L]

Name

Artistld

169 | Black Eyed Peas
11 | Black Label Society
12 | Black Sabbath

ploy: le— I invoiceld
aaaaaaaa Customer Trackld —
rrrrrrrrrrrrrrrrrrr UnitPrice
Tite | | [FirstName Quantity
ReportsTo | | [LastName
BirthDate Company Invoice
eeee Address Invoiceld
ddddddd City Customerld

eeeeeeeeeeeeeeee
nnnnnnnnnnnnnnnnnnnnnnn

.....................
aaaaaaaaaaaaaaaaaaaaaaaaaaa
nnnnnnnnnnnnnnnnnnnnn

Get all artist information for those whose name
begins with ‘Black’, sort by name (alphabetically)

SELECT *

FROM artist
WHERE Name LIKE 'BlackX%’

ORDER BY Name ASC;

L
(]

1.18.2016 47

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Advanced Joins (2)

Artistld Name Albumld Title Artistld

1 11 | Black Label Society 14 | Alcohol Fueled Brewtality Live! [Disc 1] 11
2 11 | Black Label Society 15 | Alcohol Fueled Brewtality Live! [Disc 2] 11
3 12 | Black Sabbath 16 | Black Sabbath 12
4 12 | Black Sabbath 17 | Black Sabbath Vol. 4 (Remaster) 12

Get all artist AND album information for those artists whose

name begins with ‘Black’ (don’t include those without albums),
sort by artist name, then album name

SELECT *

FROM artist art INNER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'BlackX%’

ORDER BY art.Name ASC, alb.Title ASC;

.9
L]

1.18.2016 48

SQL: Part 1

Wentworth Institute of Technology

COMP2670 — Databases | Spring 2016

Advanced Joins (3)

| Derbinsky

Artistld
169

1
1
12
12

L= R

Get all artist AND album information for those artists whose

Name

Black Eyed Peas
Black Label Society
Black Label Society
Black Sabbath
Black Sabbath

Albumid
{null}

Title
{null}

14 | Alcohol Fueled Brewtality Live! [Disc 1]
15 | Alcohol Fueled Brewtality Live! [Disc 2]
16 | Black Sabbath

17 | Black Sabbath Vol. 4 (Remaster)

Artistld
{null}

1
1"
12
12

name begins with ‘Black’ (do include those without albums!), sort

by artist name, then album title

SELECT *

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId

WHERE Name LIKE 'Black’%’
ORDER BY art.Name, alb.Title;

.9

. SQL: Part 1
1.18.2016

49

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Advanced Joins (4)

Artistld Name Albumid Title

1 169 | Black Eyed Peas {null} {null}

2 11 | Black Label Society 14 | Alcohol Fueled Brewtality Live! [Disc 1]
3 11 | Black Label Society 15 | Alcohol Fueled Brewtality Live! [Disc 2]
4 12 | Black Sabbath 16 | Black Sabbath

5 12 | Black Sabbath 17 | Black Sabbath Vol. 4 (Remaster)

Get all artist AND album information for those artists whose name
begins with ‘Black’ (do include those without albums!), provide only a
single correct Artistld, sort by artist name, then album title

SELECT art.ArtistId, art.Name, alb.Albumld, alb.Title

FROM artist art LEFT OUTER JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE Name LIKE 'BlackX%’

ORDER BY art.Name, alb.Title;

.9
L]

1.18.2016 50

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Advanced Joins (5)

Tracxld tName Composer UnitPrice Title mName gName
1 1139 | Give Me Novacaine Green Day 0.99 | American Idiot MPEG audio file Alternative & Punk

ax illin
Email L support Repld Total

Get track id, track name, composer, unit price, album title, media
type name, and genre for the track titled “Give Me Novacaine”

SELECT t.TrackId, t.Name AS tName, t.Composer, t.UnitPrice,
a.Title, m.Name AS mName, g.Name AS gName

FROM ((track t INNER JOIN album a ON t.AlbumId=a.AlbumId)

INNER JOIN mediatype m ON t.MediaTypeld=m.MediaTypeld)

INNER JOIN genre g ON t.GenreId=g.Genreld

WHERE t.Name='Give Me Novacaine';

.9

. SQL:Part 1

1.18.2016 51

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Aggregate Function

* An aggregate function takes the value of a
field (or an expression over multiple fields) for
a set of rows and outputs a single value

 When used alone, an aggregate function
reduces a set of rows to a single row

« Common aggregate functions include
MAX, MIN, SUM, AVG, COUNT

SQL: Part 1

1.18.2016 52

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Continuing Our Example

STUDENT

IS I N T T KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.21
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53 3.25
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25
Goal: find the GPA of students in MATH650 CLass

Approach: cross all rows in STUDENT with all rows in m

CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN)and e

CLASS(Class)=MATHG650 422-11-2320 COMP355
SELECT STUDENT.GPA DSEREEARZES | NilAllED
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650°";

422-11-2320 BIOL110

.9
L]

SQL: Part 1
1.18.2016 53

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Now Take the Average!

STUDENT
IS I N T T KT
Ben Bayer 305-61-2435 555-1234 1 Foo Lane 3.21 3.23
Chung-cha Kim 422-11-2320 555-9876 2 Bar Court 25 3.53
Barbara Benson 533-69-1238 555-6758 3 Baz Blvd 19 3.25

Goal: find the average GPA of students in MATH650 CLAss

Approach: cross all rows in STUDENT with all rows in m

CLASS and keep the GPA of those where
STUDENT(SSN)=CLASS(SSN)and e

CLASS(Class)=MATH650, average result set 422-11-2320 COMP355
SELECT AVG(STUDENT.GPA) AS aGPA 533-63-1238 MATH650
FROM STUDENT INNER JOIN CLASS 305-61-2435 MATH650

ON STUDENT.SSN=CLASS.SSN
WHERE CLASS.Class='MATH650°";

422-11-2320 BIOL110

.9
L]

SQL: Part 1
1.18.2016 54

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Other Examples

* Get the number of tracks for an album
SELECT COUNT(*) AS num_tracks FROM track WHERE AlbumId=1;

— COUNT (*) = number of rows
— COUNT(field) = number of non-NULL values
— COUNT(DISTINCT field) = number of distinct values of a field

« Compute the total cost of an album
SELECT SUM(UnitPrice) AS total_cost FROM track WHERE AlbumId=1;

« Get the min/max/average track unit price overall
SELECT MIN(UnitPrice) AS min_price FROM track;
SELECT MAX(UnitPrice) AS max_price FROM track;
SELECT AVG(UnitPrice) AS avg price FROM track;

SELECT MIN(UnitPrice) AS min_price, MAX(UnitPrice) AS max_price,
AVG(UnitPrice) AS avg price FROM track;

.9
L]

SQL: Part 1
1.18.2016 55

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Grouping

The GROUP BY statement allows you to define subgroups for aggregate
functions. The GROUP BY attribute list should be a subset of SELECT list.

SELECT [DISTINCT] <attribute list>
FROM <table list>

[WHERE <condition list>]

[GROUP BY <attribute list>]

[ORDER BY <attribute-order list>];

Example: track price stats by media type

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg_price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg_price DESC, mt.Name ASC;

.9
L]

1.18.2016 56

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Conceptually

SELECT mt.Name AS media_type, MIN(t.UnitPrice) AS min_price,
MAX(t.UnitPrice) AS max_price, AVG(t.UnitPrice) AS avg _price

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld

GROUP BY mt.Name

ORDER BY avg _price DESC, mt.Name ASC;

SELECT *

FROM track t INNER JOIN MediaType mt ON t.MediaTypeId=mt.MediaTypeld
ORDER BY mt.Name ASC;

Trackld Name Albumld MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice MediaTypeld Name
1 (1 For Those About To Rock (We Salute You) | 1 1 1 Angus Young, Malcolm Young, Brian Johnson 343719 11170334 | 0.99 1 MPEG audio file
2 6 Put The Finger On You 1 1 1 Angus Young, Malcolm Young, Brian Johnson 205662 6713451 | 0.99 1 MPEG audio file
3 7 Let's Get It Up 1 1 1 Angus Young, Malcolm Young, Brian Johnson 233926 7636561 |0.99 1 MPEG audio file
4 2 Balls to the Wall 2 2 1 342562 5510424 | 0.99 2 Protected AAC audio file
5|3 Fast As a Shark 3 2 1 F: Balles, 8. Kaufman, U. Dirkscneider & W. 230619 3990994 099 |2 Protected AAC audio file
6 4 Restless and Wild 3 2 1 e T R S B LG 252051 4331779 (099 |2 Protected AAC audio file
7|5 Princess of the Dawn 3 2 1 Deaffy & R.A. Smith-Diesel 375418 6290521 |0.99 2 Protected AAC audio file
GROUP BY
M SQL:Part1

1.18.2016 57

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Grouped Aggregation (1)

MediaType BillingCity BillingState avg_total sum_total ct
< z‘ diaTypeld | 1 Fort Worth T 6.80285714285714 47.62 7
» Chicago IL 6.23142857142857 43.62 7
| 5 Salt Lake City uT 6.23142857142857 43.62 7
—L Ge"red ‘ 4 Madison Wi 6.0B857142857143 42.62 7
Genrel
[Name 5 Orlando FL 5.66 39.62 7
g HRedmond WA 5.66 39.62 7
7 Cupertino CA 5.51714285714286 38.62 7
Emg.Z 1d Je— \nvoice d g Mountain View CA 5.51714285714286 77.24 14
ta“t'b‘f'"e Z“‘ ::::: m L’ac‘:"’ — g Tucson AZ 5.37428571428571 37.62 7
Title FirstName. Quantity 1p Boston MA 5.37428571428571 37.82 7
R rtsTe LastNam
roote Fo— Invoice 11 Reno NV 5.37428571428571 37.62 7
HireDate Address Invoice 1d 12 New York NY 5.37428571428571 37.82 7
Address City Customer! Id
City Stats Invoice! Date
State Country BillingAddre:
Countn v PostalCode BillingCity
Py ICod Phol BillingStat
Ph Fax BillingCs y
Fax Email BillingPostalCode
Email L SupportRepld Total

Get the average, sum, and number of all US invoices, grouped
by city and state. Order by average cost (greatest first), then
state, then city.

SELECT BillingCity, BillingState,
AVG(Total) AS avg _total, SUM(Total) AS sum_total, COUNT(*) AS ct
FROM invoice
WHERE BillingCountry='USA'
GROUP BY BillingCity, BillingState
ORDER BY avg total DESC, BillingState ASC, BillingCity ASC;

.9
L]

1.18.2016 58

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Grouped Aggregation (2)

MediaTypeld | nvoice

f Name | 1 404 25.86
2 299 23.86

a 96 21.86

e 5 sige
[Name] 5 201 18.86

6 89 18.86

7 88 17.91

8 306 16.86

° 313 16.86

10 103 15.86

” 208 15.86

12 193 14.91

18 5 13.86

14 12 13.86

15 19 13.86

lllll L—— SupportRepld Total

Using only the invoiceline table, compute the total cost of each

order, sorted by total (greatest first), then invoice id (smallest
first).

SELECT Invoiceld, SUM(UnitPrice*Quantity) AS total
FROM invoiceline

GROUP BY Invoiceld

ORDER BY total DESC, InvoiceId ASC;

.9
L]

1.18.2016 59

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

num_sold

Trackld Name Title

1 430 | I'm Going Slightly Mad Greatest Hits I 2
2 2263 | Somebody To Love Greatest Hits | 2
3 2272 | We Are The Champions News Of The World 2
4 2259 | You're My Best Friend Greatest Hits | 2
5 419 | AKind Of Magic Greatest Hits Il 1
6 2274 | All Dead, All Dead News Of The World 1
7 2255 | Another One Bites The Dust Greatest Hits | 1
8 2258 | Bicycle Race Greatest Hits | 1
9 2254 | Bohemian Rhapsody Greatest Hits | 1
10 426 | Breakthru Greatest Hits Il 1
1 2257 | Fat Bottomed Girls Greatest Hits | 1
12 2276 | Fight From The Inside News Of The World 1
13 2267 | Flash Greatest Hits | 1
14 2277 | Get Down, Make Love News Of The World 1
15 428 | Headlong Greatest Hits I 1

o Emai

Email L—{ supportl Repld

Generate a ranked list of Queen’s best selling tracks. Display the track
id, track name, and album name, along with number of tracks sold,
sorted by tracks sold (greatest first), then by track name (alphabetical).

SELECT invoiceline.TrackId, track.Name, album.Title,
SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)

INNER JOIN album ON track.AlbumId=album.AlbumId)

INNER JOIN artist ON album.ArtistId=artist.ArtistId

WHERE artist.Name='Queen’

GROUP BY invoiceline.TrackId

ORDER BY num_sold DESC, track.Name ASC;

.9
L]

1.18.2016 60

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

HAVING

The HAVING statement allows you to place
constraint(s), similar to WHERE, that use
aggregate functions (separate by AND/OR)

SELECT [DISTINCT] <attribute list>
FROM <table list>

WHERE <condition list>]

GROUP BY <attribute list>]
HAVING <condition list>]

ORDER BY <attribute-order list>];

SQL: Part 1

1.18.2016 61

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Aggregation (4)

MediaType
MediaTypeld |

Trackld Name Title num_sold

Name 1 430 | I'm Going Slightly Mad Greatest Hits Il 2
2 2263 | Somebody To Love Greatest Hits | 2
3 2272 | We Are The Champions News Of The World 2
2: o 4 2259 | You're My Best Friend Greatest Hits | 2

Employeeld |€—
FirstName Customer! 1d UnitPrice
Title FirstName Quantity
ReportsTo LastName
BirthDate Company Invoice
HireDate Address Invoice! Id

Fax Email BillingPostalCode
Email L[supportRepld Total

Generate a ranked list of Queen’s best selling tracks. Display the track id, track
name, and album name, along with number of tracks sold, sorted by tracks sold
(greatest first), then by track name (alphabetical). Only show those tracks that
have sold at least twice.

SELECT invoiceline.TrackId, track.Name, album.Title,

SUM(invoiceline.Quantity) AS num_sold

FROM ((invoiceline INNER JOIN track ON invoiceline.TrackId=track.TrackId)

INNER JOIN album ON track.AlbumId=album.AlbumId)

INNER JOIN artist ON album.ArtistId=artist.ArtistId

WHERE artist.Name='Queen’

GROUP BY invoiceline.TrackId

HAVING SUM(invoiceline.Quantity)>=2

ORDER BY num_sold DESC, track.Name ASC;

.9
L]

1.18.2016 62

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Query in a Query

A feature of SQL is its composability — the
result(s) of one query, which is a set of
rows/columns, can be used by another

* Termed inner/nested query or subquery

Most common locations

* SELECT (returns a value for an attribute)
 FROM (becomes a “table” to query/join)
 WHERE (serves as part of a constraint)

SQL: Part 1

1.18.2016 63

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Notes about Subqueries

* Tip: when designing subqueries, work inside out —
come up with each query separately, then piece
them together

— Helps with debugging

* A correlated subquery is an inner query that
references a value from an outer query

— The inner query will be run once for every tuple of the
outer query (i.e. slow!)

 Don’t use ORDER BY in inner queries (some
DBMSs don't allow, typically wasteful anyhow)

SQL: Part 1

1.18.2016 64

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 Derbinsky

Example: WHERE

Artist Album Track MediaType - — —
Artistid Albumid Trackld le—, MediaTypeld Trackld Name Albumid MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
Name Title Name Name 4 38 | All | Really Want 6 1 1 | Alanis Morissette & Glenn Ballard 284891 9375567 0.99

Argistid Mg 2 39 | You Oughta Know 6 1 1 [Alanis Morissette & Glenn Ballard 249234 8196916 | 0.99

Genreld | 3 40 | Perfect 6 1 1| Alanis Morissette & Glenn Ballard | 188133 | 6145404 | 0.99
Comj r Gen:

Playlist PlaylistTrack il peson 4 41 Hand In My Pocket 6 1 T Alanis Morissette & Glenn Ballard | 221570 72242@ 0.99

Playlistid Playlistid Bytes Name 5 42 Right Through You 6 1 1| Alanis Morissette & Glenn Ballard 176117 5793082 0.99
UnitPrice 6 43 Forgiven 6 1 1| Alanis Morissette & Glenn Ballard | 300355 9753256 0.99
InvoiceLine 7 44 | You Learn 6 1 1| Alanis Morissette & Glenn Ballard 239699 7824837 0.99 |

Employee nvolcelineld 8 45 | Head Over Feet 6 1 1| Alanis Morissette & Glenn Ballard |~ 267493 8758008 | 0.99

Employeeld |€— Invoiceld - == e

LastName Customer Trackid — 9 46 | Mary Jane 6 1 1| Alanis Morissette & Glenn Ballard 280607 9163588 0.99

Firsthame Customenid 4 Unitprice 10 47 [lronic 6 1 1 | Alanis Morissette & Glenn Ballard 220825 7598866 | 0.99

Title FirstName Quantity

ReportsTo LastName 1 48 | Not The Doctor 6 1 1 | Alanis Morissette & Glenn Ballard 227631 7604601 0.99

BirthDate Companty Invoice 12 49 | Wake Up 6 1 1 | Alanis Morissette & Glenn Ballard 293485 9703359 | 0.99

HireDate Address Invoiceld) .

Address City Customerld 13 50 | You Oughta Know (Alternate) 6 1 1| Alanis Morissette & Glenn Ballard 491885 16008629 0.99

City State InvoiceDate

State Country BillingAddress

Country PostalCode BillingCity

PostalCode Phone BillingState

Phone Fax BillingCountry

Fax Email BillingPostalCode

Email L—— SupportRepld Total

Get all track information for the album Jagged
Little Pill (do not use a join)

SELECT t.*
FROM track t Notes

WHERE t.AlbumId = (The subquery needs to
SELECT a.AlbumId .
FROM album a return a single value for
WHERE a.Title='Jagged Little Pill’ the = to make sense

); Not correlated!

.9
L]

1.18.2016

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

How the Query Works Conceptually

SELECT t.*
FROM track t
WHERE t.AlbumId = (

SELECT a.AlbumId Albumid
FROM album a } Inner Query

WHERE a.Title='Jagged Little Pill" 116
)s

SELECT t.*
FROM track t
WHERE t.AlbumId = 6;

.9

. SQL:Part 1
1.18.2016 66

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

N

otes about Subqueries and WHERE

For most operators, the subquery will need to return
a single value

Ot

ner operators:
NOT] IN = query returns a single column of options

NOT] EXISTS = checks if query returns at least a

single row

e <op> ALL = true if <op> returns true for all results
(single field)

« <op> ANY/SOME = true if <op> returns true for any
result (single field)

.9
L]

SQL: Part 1

1.18.2016 67

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 Derbinsky

Nesting Example: WHERE

Artist Album Track MediaType - — —
Artistld Alburnid Trackid le— MediaTypeld Trackld Name Albumid MediaTypeld Genreld Composer Milliseconds Bytes UnitPrice
Name Title Name Name 1 419 | AKind Of Magic 36 1 1 | Roger Taylor 262608 8689618 0.99

Artistid ::”:f"";’ 3 2 420 | Under Pressure 36 1] 1| Queen & David Bowie 236617 | 7739042 0.99
edia el S— S - S M—
e 1 a 421 | Radio GAGA 36 1 1| Roger Taylor 343745 11358573 | 0.99
Composer Genre 4 422 [WantItAll 36 1 1| Queen 241684 7876564 0.99 |
T Playhs rack peene Senreld s 423 [Want To Break Free 36 1 1 John Deacon 259108 8552861 0.9
UnitPrice 6 424 | Innuendo 36 1 1 Queen 387761 | 12664501 0.99
InvoiceLine 7 425 | It's AHard Life 36 1 1 | Freddie Mercury 249417 8112242 0.99
Employee InvoiceLineld 8 426 | Breakthru 36 1 1| Queen 249234 8150479 0.99
Employeeld |€— Invoiceld 9 427 | Who Wants To Live Forever 36 1] 1| Brian May 297691 | 9577577 0.99 |
LastName Customer Trackld — p— — -l { — { S —
[Firstame | MCustomerid] UnitPrice | 10 428 | Headlong 36 1 1 Queen 273057 8921404 0.99
Title FirstName Quantity 11 429 | The Miracle 36 1 1| Queen 294974 | 9671923 0.99
FeporsTo F— 30 | 'm Going Slightly Mad 36 1 1 Queen 248032 8192339 0.99
BirthDate Company Invoice 12 430 | I'm Going Slightly Ma e ‘ | i
HireDate Address Invoiceld 13 431 | The Invisible Man 36 1 1| Queen 238994 7920353 0.99
Address city Customerld 14 432 Hammer To Fall 36 1 1| Brian May 220316 | 7255404 0.99
City State InvoiceDate B . . . |
State Country BillingAddress 15 433 | Friends Will Be Friends 36 1 1| Freddie Mercury & John Deacon 248920 8114582 0.99
E"““‘Ifc‘/ . ::“B'C‘"’e :f::f"gg“y 16 434 | The Show Must Go On 36 1 1 Queen 263784 | 8526760 0.99
P::nae = Fa: - B:II:::C:::KW 17 435 | One Vision 36 1 1] Queen 242509 | 7936928 0.99
Fax Email BillingPostalCode 18 2254 Bohemian Rhapsody 185 1 1| Mercury, Freddie 358948 11619868 0.99
Emal —L.Supporthepid Total 19 2255 | Another One Bites The Dust 185 1] 1| Deacon, John 216946 7172355 0.99

Get all track information for the artist Queen (do not use a join)

SELECT t.*
FROM track t
WHERE t.AlbumId IN (
SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (
SELECT art.ArtistId
FROM artist art 1. Not correlated!

WHERE art.Name='Queen’

Notes

.9
L]

1.18.2016

SQL: Part 1

Wentworth Institute of Technology

COMP2670 — Databases | Spring 2016 | Derbinsky

How the Query Works Conceptually

SELECT t.*
FROM track t
WHERE t.AlbumId IN (
SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = (
SELECT art.ArtistId

FROM artist art
WHERE art.Name='Queen’ l
)

Artistld

)5

1 51

SELECT t.*

FROM track t
WHERE t.AlbumId IN (36, 185, 186);

SELECT t.*

FROM track t

WHERE t.AlbumId IN (
SELECT alb.AlbumId
FROM album alb
WHERE alb.ArtistId = 51

)5

Albumlid

1 36
2 185

3 186

.9
L]

1.18.2016 69

SQL: Part 1

COMP2670 — Databases

Wentworth Institute of Technology

Example: SELECT

MediaType
iaTypel

L]

MediaT)

d

ax ai
Email L—— SupportRepld Total

» w n -

©o @ ~N (] o

Spring 2016 |

artist_name

Santana

Derbinsky

album_ct

Santana Feat. Dave Matthews

Santana Feat. Eagle-Eye Cherry

Santana Feat. Eric Clapton

Santana Feat. Everlast

Santana Feat. Lauryn Hill & Cee-Lo

Santana Feat. Mana

Santana Feat. Rob Thomas

Santana Feat. The Project G&B

oOjlo o/l o ol o oo Ww

For each artist starting with Santana, get the number of albums, sorted

by count (greatest first), then artist (alphabetical)

SELECT art.Name AS artist_name,

(Notes
SELECT COUNT(*) LS

FROM album alb 1. The subquery needs to

WHERE alb.ArtistId=art.ArtistId
) AS album ct
FROM artist art
WHERE art.Name LIKE 'Santana’%’
ORDER BY album_ct DESC, art.Name;

L
LJ

1.18.2016

SQL: Part 1

return a single value for
each tuple generated
2. Correlated subquery!

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

How the Query Works Conceptually

SELECT art.Name AS artist_name, Correlated - one query per row to

(il i |
SELECT COUNT(*) fill in album_ct column!

FROM album alb
WHERE alb.ArtistId=art.ArtistId
) AS album_ct
FROM artist art

SELECT COUNT(*)
FROM album alb
WHERE alb.ArtistId=59;

WHERE art.Name LIKE 'Santana’’ 503
ORDER BY album_ct DESC, art.Name;
Artistld Name artist_name album_ct

1 59 Santana 1 Santana 3

2 60 Santana Feat. Dave Matthews 2 Santana Feat. Dave Matthews 0

3 61 Santana Feat. Everlast 3 Santana Feat. Eagle-Eye Cherry 0
SE L ECT * 4 62 Santana Feat. Rob Thomas 4 Santana Feat. Eric Clapton 0
FROM art iSt art 5 63 Santana Feat. Lauryn Hill & Cee-Lo 5 Santana Feat. Everlast 0
WHERE art.Name LIKE ' Santana% ' ; 6 64 Santana Feat. The Project G&B 6 Santana Feat. Lauryn Hill & Cee-Lo | 0

7 65 Santana Feat. Mana 7 Santana Feat. Mana 0

8 66 Santana Feat. Eagle-Eye Cherry 8 Santana Feat. Rob Thomas 0

9 67 Santana Feat. Eric Clapton 9 Santana Feat. The Project G&B 0

.9
L]

1.18.2016 71

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 |

L]

artist_name

Santana

Santana Feat. Dave Matthews

Santana Feat. Eagle-Eye Cherry

» w n -

Santana Feat. Eric Clapton

5 Santana Feat. Everlast

6 Santana Feat. Lauryn Hill & Cee-Lo

7 Santana Feat. Mana

8 Santana Feat. Rob Thomas

9 Santana Feat. The Project G&B

ax
Email L support Repld

Derbinsky

For each artist starting with Santana, get the number of albums, sorted

by count (greatest first), then artist (alphabetical)

SELECT artist _name, COUNT(qgl.AlbumId) AS album_ct

FROM

(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId
WHERE art.Name LIKE 'Santana’%’

) q1

GROUP BY artist_id

ORDER BY album_ct DESC, artist_name;

L
(]

1.18.2016

SQL: Part 1

72

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

How the Query Works Conceptually

SELECT artist_name, COUNT(ql.AlbumId) AS album_ct

FROM
(
SELECT art.ArtistId AS artist_id, art.Name AS artist_name, alb.AlbumId
FROM artist art LEFT JOIN album alb ON art.ArtistId=alb.ArtistId ql
WHERE art.Name LIKE 'Santana’%’ N R
) ql i s | samana w©
GROUP BY artist_id o -
ORDER BY album_ct DESC, artist_name; e e e
artist_name album_ct
1 Santana 3
2 Santana Feat. Dave Matthews 0
3 Santana Feat. Eagle-Eye Cherry | 0
4 Santana Feat. Eric Clapton 0
SELECT artist _name, COUNT(ql.AlbumId) AS album ct 5 | Santana Feat. Everisst 0
FROM ql 6 Santana Feat. Lauryn Hill & Cee-Lo | 0
GROUP BY ar‘tist id 7 Santana Feat. Mana 0
ORDER BY album ct DESC, artist name; SanlanaFoe! RobThomes |
- - 9 Santana Feat. The Project G&B 0

.9
L]

1.18.2016 /3

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Notes about Subqueries and FROM

* When using one or more subqueries in the
FROM clause, remember two important items

— The subquery must be enclosed within
parentheses

— The subquery must have a name (e.g. ql in the
previous example), which is indicated just after
the close parenthesis

* The name can be used to refer to columns in
the subquery via the dot notation (e.g.
subgqueryname.columnname) — this is
required if the column name is not unique

SQL: Part 1

1.18.2016 74

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Nesting Example: FROM

Artist Album MediaType

min_g max_q avg_q num_customers

e 1 36 38 37.9661016949153 | 59

Employee
Employeeld |€—
usH

FirstName Customerl d UnitPrice
Title FirstName Quantity
eeeeeeeeeeeeeeeee

BirthDate Company Invoice
eeeeee Address Invoiceld

ax
Email L {supportRepld | [Total

Find the minimum, maximum, and average number of tracks ordered per customer (across all invoices).
Also include the total number of customers.

SELECT MIN(g2.sum_q) AS min_q, MAX(q2.sum_qgq) AS max_q, AVG(q2.sum_q) AS avg (q,
COUNT(*) AS num_customers
FROM
(SELECT qgl.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il

) q1
GROUP BY gl.CustomerId

) q2;

.9
L]

1.18.2016 75

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

How the Query Works Conceptually

SELECT MIN(g2.sum_q) AS min_g, MAX(gq2.sum_q) AS max_q, AVG(q2.sum_q) AS avg q,
COUNT(*) AS num_customers

FROM
(SELECT gl.CustomerId, SUM(Quantity) AS sum_q
FROM
(SELECT i.CustomerId, il.Quantity
FROM invoice i NATURAL JOIN invoiceline il
) ql
GROUP BY gl.CustomerId
) 92;
q2 ql
q1.Customerld sum_q Customerld Quantity
1 1 38 1 2 1
2 2 38 2 5 1
3 3 38
3 4 1
4 4 38
4 4 1
5 5 38
5 4 1
min_qg max_q avg_q num_customers 6 6 38
77 38 6 |4 1
1 36 38 37.9661016949153 | 59
8 8 38 _ 7 8 1

.9
L]

1.18.2016 76

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Subquery (1)

Artist Album Track MediaType

FirstName LastName total_spent

Artistld Albumld Trackid le— P MediaTypeld | .
Name Title Name Name | 1 Helena Holy 49.62
Artistid Albumld > Richard Cunningham 47.62
MediaT Id —t T T
o 1 a Luis Rojas 46.62
Composer —L S 4 Ladislav Kovécs 4562
Playlist PlaylistTrack Milliseconds Genreld P
Bytes [Name | s Hugh O'Reilly 45.62
UnitPrice g Julia Barnett 43.62
\nvoiceLine 7 Frank Ralston 43.62
Employee Invoicel Lineld 8 Fynn Zimmermann 43.62
Employeeld |€— Invoicel Id -
LastName. Customer Trackid] g Astrid Gruber 42.62
FirstName Customerld UnitPrice 10 Victor Stevens 4262
Title FirstName Quantity T =—ayET
ReportsTo LastName 11 Terhi Hamalainen 41.62
BirthDate Company Invoice 12 Isabelle Mercier 40.62
HireDate Address Invoiceld v - z
Addroms City P v—— 43 Franti$ek Wichterlova 40.62
City State InvoiceDate 14 Johannes Van der Berg 40.62
State Country BillingAddress
Country PostalCode BillingCity
PostalCode Phone BillingState
Phone Fax BillingCountry
Fax Email BillingPostalCode
Email L supportRepld Total

Find the highest spending customers: get a ranked list of customers (first name, last name) who have spent at
least $40, sorted by amount spent (greatest first), then last name, then first name

SELECT * FROM (
SELECT c.FirstName, c.LastName, (
SELECT SUM(i.Total)
FROM invoice i
WHERE c.CustomerId=i.CustomerlId
) AS total_spent
FROM customer c) qi1
WHERE qgl1.total_spent>=40
ORDER BY qgl.total_spent DESC, ql.LastName ASC, qgl.FirstName ASC;

.9
L]

1.18.2016 77

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Subquery (2)

. x::::::;d ‘ g_name g.ct g_percentage

_f e 1 Rock 1297 | 37.0254067941764

] e 2 Latin 579 | 16.5286896945475
B 3 Metal 374 | 10.6765629460462

[poeerle— rrrra— 4 Alternative & Punk | 332 | 9.47750906365972
[7 ﬂiﬁl’fﬁ 5 Jazz 130 | 3.71110476734228
6 TV Shows 93 | 2.65486725663717
comi rosmd 7 Blues 81 | 2.31230373965173
L o 8 Classical 74 | 2.11247502141022

Create a report of the distribution of tracks into genres. The result set should list each
genre by name, the number of tracks of that genre, and the percentage of overall tracks
for that genre. The rows should be sorted by the percentage (greatest first), then genre
name (alphabetically).

SELECT x.Name AS g _name, x.g_ct AS g ct, (100.0 * g ct / ct) AS g_percentage
FROM (SELECT *, (SELECT COUNT(*) FROM track t1 WHERE tl1.Genreld=g.Genreld) AS g_ct,
(SELECT COUNT(*) FROM track t2) AS ct
FROM genre g) x
ORDER BY g_percentage DESC, g_name ASC;

.9
L]

1.18.2016 /8

SQL: Part 1

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Inserting Rows

* Insert all attributes, in same order as table
INSERT INTO table_name
VALUES (a, b, .. n);

* Insert a subset of attributes (not assigned = NULL)
INSERT INTO table name (al, a2, .. an)
VALUES (a, b, .. n)[, (a2, b2, .. n2), ..];

* Insert via query
INSERT INTO table name (al, a2, .. an)
SELECT al, a2, .. an FROM ..

SQL: Part 1

1.18.2016 79

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Updating Rows

General syntax

UPDATE table name

SET <attribute=value list>
[IWHERE <condition list>];

» Attribute=value is comma-separated

» Condition list may result in more than one
rows being updated via a single statement

SQL: Part 1

1.18.2016 80

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Deleting Rows

General syntax
DELETE FROM table name
[IWHERE <condition list>];

» Condition list may result in more than one
rows being deleted via a single statement

* No condition = clear table (fruncate)

SQL: Part 1

1.18.2016 81

Wentworth Institute of Technology COMP2670 — Databases | Spring 2016 | Derbinsky

Summary

 You have now learned most of the DML
components of SQL

— SELECT: get stuff out

— INSERT: add row(s)

— UPDATE: change existing row(s)
— DELETE: remove row(s)

* While using SELECT you learned about attribute
ordering/renaming (AS), row filtering (WHERE) and
sorting (ORDER BY), table joining (FROM + JOIN/ON),
grouped aggregation (GROUP BY + FN + HAVING),
set operations on multiple queries (e.g. UNION),
and subqueries (SELECT within SELECT)

SQL: Part 1

1.18.2016 82

