
Wentworth Institute of Technology Engineering & Technology

WIT COMP1000

Classes

WIT COMP1000 2

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Review: Scanner

§ Recall that Scanner variables are used to get
input from the keyboard (with System.in) or
from files

§ We use the hasNext(), hasNextLine(),
hasNextInt(), and hasNextDouble()
methods to check if there are more inputs

§ Then we use the next(), nextLine(),
nextInt(), and nextDouble() methods to
read those inputs

WIT COMP1000 3

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;

public class ClassExamples {
public static void main(String[] args) {

Scanner keyboardIn = new Scanner(System.in);
System.out.print("Enter the file name: ");
String inputFileName = keyboardIn.next();
try (Scanner inputFile = new Scanner(new File(inputFileName))) {

while(inputFile.hasNextLine()) {
String line = inputFile.nextLine();
System.out.println(line);

}
} catch (FileNotFoundException ex) {

System.out.println("Error! File " + inputFileName + " not found!");
System.exit(0);

}
}

}

Scanner Example
keyboardIn is a
Scanner variable

keyboardIn.next()
used to read one

String from System.in

inputFile is
another Scanner

variable

inputFile.hasNextLine()
used to check if there are more

lines in the file

inputFile.nextLine()
used to read one line from

the file

WIT COMP1000 4

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Scanner Methods

§ The next(), hasNextLine(), and nextLine()
methods are part of the Scanner class
»Same with the other Scanner methods we've seen

§ When calling any of the class methods, you must
use one instance of a variable of that class, called
an object, as the identifier before the method call
»Generic form: RETURN_VALUE = OBJECT.METHOD(ARGUMENTS);
»Specific example: line = inputFile.nextLine();

WIT COMP1000 5

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Object-Oriented Programming (OOP)
§ A programming paradigm based on the concept of

"objects", which commonly represent real world
entities
» For example: a person, a car, a pencil, a sensor

§ Objects have data fields, or attributes, that represent
the state of the object

§ Objects have methods, or actions, that use or modify
the data fields of the object

§ Examples of OO languages: C++, C#, Java,
JavaScript, PHP, Python, Ruby, …

WIT COMP1000 6

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

OOP Terminology
§ Classes are like templates
» Identify the data fields and methods that every

instance of this type will have
»Many Java packages include class definitions

already, such as the java.io package
»You can define your own class types as well

§ An Object is a specific instance of a class, i.e., it
is a variable of the class type
»For example, variables of type Rectangle might be

named rectA and rectB

6

WIT COMP1000 7

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example Class: Rectangle

§ This defines a class named Rectangle
§ We will discuss the meaning of the public keyword

for the class and for the variables later
§ The two double lines say that the Rectangle class

uses two double data fields named length and
width

» In other words, every instance of the Rectangle class (a
Rectangle object) will have its own length and width

public class Rectangle {
public double length;
public double width;

}

WIT COMP1000 8

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Data Fields

§ Defining a data field in a class is NOT a variable
declaration

§ You can not use those variables except in the context
of an instance of the class (an object)

§ In other words, you can think of the data fields as
sub-pieces of an object that you can only access as
part of the object

§ So, when you declare a variable of a class type, it
automatically has all of the data fields for that object

§ Using the data fields is similar to using any other
variable of the same type

WIT COMP1000 9

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Creating a New Class
§ To create a new class that is part of an existing

project:
» Right click on the project heading in Eclipse
» Select New, and Class
» Give the class a name, e.g., Rectangle
» Don't worry about all of the other options for now

§ You can create a class with a main() method (we've
been doing it all semester!), but not all classes will
have a main() method
» Often have only one class with a main() method in each

project

WIT COMP1000 10

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

One Class per File

§ In Java, each class you define must go into a
separate Java file in the project

§ It is common to have a single class that has
nothing in it but a main() method
»Used to start the program

§ You may have several classes (and hence
several Java files) in a project

§ We will follow this model

WIT COMP1000 11

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public class ClassExamples {
public static void main(String[] args) {

Rectangle rectA = new Rectangle();
rectA.length = 4.2;
rectA.width = 10.0;
System.out.printf("Rectangle length: %.3f%n", rectA.length);
System.out.printf("Rectangle width: %.3f%n", rectA.width);

}
}

Using the Rectangle Class

Create an object
named rectA of
type Rectangle

Give rectA's length data
field a value of 4.2 and

rectA's width data field a
value of 10.0

WIT COMP1000 12

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Multiple Class Objects

§ You can declare more than one variable of a
class type

§ Each instance of a class variable has its own
data fields that are completely separate from
other objects of the same type

§ For example, declaring two Rectangle objects
actually declares four double variables (two
length variables and two width variables)

WIT COMP1000 13

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public class ClassExamples {
public static void main(String[] args) {

Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

System.out.printf("Rectangle A length: %.3f%n", rectA.length);
System.out.printf("Rectangle A width: %.3f%n", rectA.width);
System.out.printf("Rectangle B length: %.3f%n", rectB.length);
System.out.printf("Rectangle B width: %.3f%n", rectB.width);

}
}

Example: Multiple Rectangle Objects

Create two
Rectangle variables

named rectA and
rectB

Set the length and width
data fields for rectA

Set the length and width
data fields for rectB

public class Rectangle {
public double length;
public double width;

}

Rectangle.java:

ClassExamples.java:

WIT COMP1000 14

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Objects in Memory
§ When an object is created, memory is allocated for

every data field, for example:

4.2
address

10.0
3.8
2.5

0xffa000
0xffa008

value variable

…

rectA.length
rectA.width
rectB.length
rectB.width

0xffa010
0xffa018
0xffa020
0xffa028
0xffa030

Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();
rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

WIT COMP1000 15

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Define a class named Triangle. It should
have two data fields: base and height. Write a
main() method in another class (your default
class for lecture examples is fine) that declares
a Triangle object, assigns values to the two
data fields, and then prints out both data fields.

WIT COMP1000 16

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Triangle {
public double base;
public double height;

}

Triangle.java:

public class ClassExamples {
public static void main(String[] args) {

Triangle myTri = new Triangle();

myTri.base = 17.348;
myTri.height = 104.6;

System.out.printf("Triangle base: %.3f%n", myTri.base);
System.out.printf("Triangle height: %.3f%n", myTri.height);

}
}

ClassExamples.java:

WIT COMP1000 17

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Class Methods
§ In addition to data fields, classes can include

class methods
§ Class methods are like any other method,

except that you have access to the data fields
for the class while inside the method
»This allows you to take advantage of all of the data

fields without having to pass them in as arguments
§ They are called using one instance of the class,

as we've seen with Scanner and
PrintWriter

WIT COMP1000 18

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Defining Class Methods

§ We've added a class method, print(), that returns
nothing, takes no arguments, and prints out the length
and width values of the rectangle
» Note the lack of the static keyword – stay tuned

§ Note that length and width are used because they are
part of the same class as the method
» The print() method will be called as part of one object and

it will therefore use length and width from that object

public class Rectangle {
public double length;
public double width;
public void print() {

System.out.printf("length: %.3f, ", length);
System.out.printf("width: %.3f%n", width);

}
}

WIT COMP1000 19

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Using Class Methods

public class Rectangle {
public double length;
public double width;

public void print() {
System.out.printf("length: %.3f, ", length);
System.out.printf("width: %.3f%n", width);

}
}

Rectangle.java:

public class ClassExamples {
public static void main(String[] args) {

Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

System.out.print("Rectangle A: ");
rectA.print();
System.out.print("Rectangle B: ");
rectB.print();

}
}

ClassExamples.java:

WIT COMP1000 20

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Class Methods vs Non-Class Methods
§ We could create a print() method that is not part of

the class
» Like other methods we've been writing so far this semester

» Part of the same class as main()

§ To print a Rectangle, we would have to pass in two
parameters to the method
» Or, in general, as many parameters as there are data fields

§ More importantly, by adding the print() method as a
class method we are encapsulating all of the actions
and information about the Rectangle within the class

WIT COMP1000 21

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Don't Do This!

public class BadClassExamples {
public static void rectanglePrint(double length, double width) {

System.out.printf("length: %.3f, ", length);
System.out.printf("width: %.3f%n", width);

}

public static void main(String[] args) {
Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

System.out.print("Rectangle A: ");
rectanglePrint(rectA.length, rectA.width);
System.out.print("Rectangle B: ");
rectanglePrint(rectB.length, rectB.width);

}
}

BadClassExamples.java:

public class Rectangle {
public double length;
public double width;

}

Rectangle.java:

WIT COMP1000 22

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Use Class Methods!

§ If a method is utilizing or manipulating data fields
that are part of a class, then that method should
be a class method of that class

§ If an action is logically associated with a
particular kind of object, then make a method
that is part of the class for those kinds of objects

§ Aside: all methods are part of some class in Java
»Put methods where they belong "best"

WIT COMP1000 23

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Adding Another Class Method

public class Rectangle {
public double length;
public double width;

public double area() {
return length * width;

}

public void print() {
System.out.printf("length: %.3f, ", length);
System.out.printf("width: %.3f%n", width);

}
}

Rectangle.java: public class ClassExamples {
public static void main(String[] args) {

Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

System.out.print("Rectangle A: ");
System.out.printf("area: %.3f, ", rectA.area());
rectA.print();
System.out.print("Rectangle B: ");
System.out.printf("area: %.3f, ", rectB.area());
rectB.print();

}
}

ClassExamples.java:

WIT COMP1000 24

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Add two class methods to your Triangle class:
print() and area(). print() should print
the values of the data fields. area() should
return the area of the triangle. Update your
main() method to test the additional methods.

WIT COMP1000 25

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Triangle {
public double base;
public double height;

public double area() {
return 0.5 * base * height;

}

public void print() {
System.out.printf("base: %.3f, ", base);
System.out.printf("height: %.3f%n", height);

}
}

Triangle.java:

public class ClassExamples {
public static void main(String[] args) {

Triangle myTri = new Triangle();

myTri.base = 17.348;
myTri.height = 104.6;

System.out.print("Triangle myTri: ");
System.out.printf("area: %.3f, ", myTri.area());
myTri.print();

}
}

ClassExamples.java:

WIT COMP1000 26

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Calling Class Methods from the Class

§ You can call class methods from other class
methods of the same class

§ When doing so, you use the method directly,
just like when accessing data fields

§ That is, there is no object name and a dot
before the name of the method, because you
are already in the context of the class
»This changes if you are referring to another

instance of the class

WIT COMP1000 27

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Calling One Class Method from Another

public class Rectangle {
public double length;
public double width;

public double area() {
return length * width;

}

public void print() {
System.out.printf("length: %.3f, ", length);
System.out.printf("width: %.3f, ", width);
System.out.printf("area: %.3f%n", area());

}

}

Rectangle.java:
public class ClassExamples {

public static void main(String[] args) {
Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.length = 4.2;
rectA.width = 10.0;
rectB.length = 3.8;
rectB.width = 2.5;

System.out.print("Rectangle A: ");
rectA.print();
System.out.print("Rectangle B: ");
rectB.print();

}
}

ClassExamples.java:

WIT COMP1000 28

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Visibility Modifier
§ Every data field and class method has a set visibility

that determines which other classes (if any) are
allowed to access that data field or invoke that class
method

§ There are four visibility levels: public, private,
protected, and package-private

§ We will only be using public and private in this
course
»We'll touch on package-private shortly
» You will learn about protected when you learn about

inheritance (if you take Computer Science II)

WIT COMP1000 29

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public Visibility

§ So far, we've only been using public data fields and
class methods

§ public data fields and class methods can be
accessed directly from anywhere in your program

§ You can use public data fields just like any other
variables (using the OBJECT.FIELD syntax)

§ You can use public class methods just like any other
methods (using the OBJECT.METHOD() syntax)

WIT COMP1000 30

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

private Visibility
§ private data fields and class methods can

only be accessed and used inside of other
methods of the same class

§ private data fields can only be used inside
class methods of the same class

§ private class methods can only be called
from other methods of the same class

§ You can NOT use private data fields or class
methods from methods outside of that class,
such as main()

WIT COMP1000 31

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Visibility

public class PlayingCard {
private String mySuit;
private int myRank;

public void setCard(String suit, int rank) {
mySuit = suit;
myRank = rank;

}

public void print() {
if (myRank == 13) {

System.out.print("King");
} else if (myRank == 12) {

System.out.print("Queen");
} else if (myRank == 11) {

System.out.print("Jack");
} else if (myRank == 1) {

System.out.print("Ace");
} else {

System.out.print(myRank);
}
System.out.println(" of " + mySuit);

}
}

PlayingCard.java:

public class ClassExamples {
public static void main(String[] args) {

PlayingCard c = new PlayingCard();
c.setCard("Spades", 12);
c.print();

c.mySuit = "Hearts"; // compiler error
}

}

ClassExamples.java:

mySuit is a private data field of
PlayingCard, so it can only be

used in methods in the
PlayingCard class

WIT COMP1000 32

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Modify your Triangle class so that both the
base and height data field are private. Then
add two new public methods: one named
setBase() to set the value for the base and
one named setHeight() to set the value for
the height. Update your print() method to
also print the area of the triangle (using your
area() method!). Finally, update your main()
method to test these modifications.

WIT COMP1000 33

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Triangle {
private double base;
private double height;

public void setBase(double newBase) {
base = newBase;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double area() {
return 0.5 * base * height;

}

public void print() {
System.out.printf("base: %.3f, ", base);
System.out.printf("height: %.3f, ", height);
System.out.printf("area: %.3f%n", area());

}
}

Triangle.java:

public class ClassExamples {
public static void main(String[] args) {

Triangle myTri = new Triangle();

myTri.setBase(17.348);
myTri.setHeight(104.6);

System.out.print("Triangle myTri: ");
myTri.print();

}
}

ClassExamples.java:

WIT COMP1000 34

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Setting Visibility Levels

§ You set the visibility level of every data field and
class method individually by placing the visibility
modifier in front of the declaration

§ The default visibility level, if you don't specify
any visibility modifiers, is package-private
»This means that the data field or class method can

be used only by other methods in the same package
§ In this course, you should always set the

visibility of every data field and class method to
be explicitly either public or private

WIT COMP1000 35

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Aside: Packages
§ Java provides packages to group together classes that

are part of a related set of functionality
§ A class is made part of a package by putting the
package keyword and a package name at the top of
the class file
» Generic form: package PACKAGE_NAME;

» For example: package edu.wit.cs.comp1000.examples;

§ The default visibility level, package-private, provides
access to other classes in the same package only

§ Built-in classes are part of built-in packages such as
java.io

WIT COMP1000 36

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Why private?

§ By making data fields private, you ensure that they
are not used outside of the class methods

§ In this course, you should always make your data
fields private

§ Methods are made private if they are only used
internally in the class, and should not be called
elsewhere

§ In other words, private methods are commonly
used to hide the implementation details of a class
» In this course, most (not all) of your methods will be
public

WIT COMP1000 37

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: private Methods

public class PlayingCard {
private String mySuit;
private int myRank;
private void validate() {

if (!mySuit.equals("Clubs") && !mySuit.equals("Diamonds") &&
!mySuit.equals("Spades") && !mySuit.equals("Hearts")) {

System.out.println("Invalid Suit!");
System.exit(0);

}
if (myRank < 1 || myRank > 13) {

System.out.println("Invalid Rank!");
System.exit(0);

}
}
public void setCard(String suit, int rank) {

mySuit = suit;
myRank = rank;
validate();

}
public void print() {

if (myRank == 13) {
System.out.print("King");

} else if (myRank == 12) {
System.out.print("Queen");

} else if (myRank == 11) {
System.out.print("Jack");

} else if (myRank == 1) {
System.out.print("Ace");

} else {
System.out.print(myRank);

}
System.out.println(" of " + mySuit);

}
}

public class ClassExamples {
public static void main(String[] args) {

PlayingCard c = new PlayingCard();
c.setCard("Spades", 12);
c.print();

c.setCard("sabers", 1);
}

}

ClassExamples.java:

private method, can't be
called from outside of the
PlayingCard class

PlayingCard.java:

WIT COMP1000 38

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Better Printing with toString()
§ By default, you can't print an object directly
» How would the JVM know what to print or how to format it?

» If you do print an object it will simply print the memory
address of that object

§ A print() method that prints out the object is ok, but
a better solution is to have a toString() method that
returns a String that represents the object
» That way, the caller can include that String directly in their

own output statements

» In fact, Java will do the conversion automatically for you if
you name the method toString()!

WIT COMP1000 39

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: toString()
public class PlayingCard {

private String mySuit;
private int myRank;
private void validate() {

if (!mySuit.equals("Clubs") && !mySuit.equals("Diamonds") &&
!mySuit.equals("Spades") && !mySuit.equals("Hearts")) {

System.out.println("Invalid Suit!");
System.exit(0);

}
if (myRank < 1 || myRank > 13) {

System.out.println("Invalid Rank!");
System.exit(0);

}
}
public void setCard(String suit, int rank) {

mySuit = suit;
myRank = rank;
validate();

}
public String toString() {

String output = "";
if (myRank == 13) {

output += "King";
} else if (myRank == 12) {

output += "Queen";
} else if (myRank == 11) {

output += "Jack";
} else if (myRank == 1) {

output += "Ace";
} else {

output += myRank;
}
output += " of " + mySuit;
return output;

}
}

PlayingCard.java:

public class ClassExamples {
public static void main(String[] args) {

PlayingCard c = new PlayingCard();
c.setCard("Spades", 12);

System.out.println("My card is the " + c.toString());
// even better:
System.out.println("My card is the " + c);

}
}

ClassExamples.java:

WIT COMP1000 40

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Formatting Strings
§ It is often the case that you want to format the
String you create in toString() in the same way
as we do with printf()
» To control decimal places, etc

§ The String.format() method creates String
objects using the same syntax as printf()

§ This is useful in many cases, not just in toString()
methods

§ Example:
String s = String.format("value=%.2f%n", val);

WIT COMP1000 41

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: String.format()

public class Rectangle {
private double length;
private double width;

public void setLength(double newLength) {
length = newLength;

}
public void setWidth(double newWidth) {

width = newWidth;
}
public double area() {

return length * width;
}
public String toString() {

String output = String.format("length: %.3f, ", length);
output += String.format("width: %.3f, ", width);
output += String.format("area: %.3f", area());
return output;

}
}

Rectangle.java:

public class ClassExamples {
public static void main(String[] args) {

Rectangle rectA = new Rectangle();
Rectangle rectB = new Rectangle();

rectA.setLength(4.2);
rectA.setWidth(10.0);
rectB.setLength(3.8);
rectB.setWidth(2.5);

System.out.println("Rectangle A: " + rectA);
System.out.println("Rectangle B: " + rectB);

}
}

ClassExamples.java:

WIT COMP1000 42

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Modify your Triangle class by converting your
print() method into a toString() method.
Update main() accordingly.

WIT COMP1000 43

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Triangle {
private double base;
private double height;

public void setBase(double newBase) {
base = newBase;

}

public void setHeight(double newHeight) {
height = newHeight;

}

public double area() {
return 0.5 * base * height;

}

public String toString() {
String output = String.format("base: %.3f, ", base);
output += String.format("height: %.3f, ", height);
output += String.format("area: %.3f", area());
return output;

}
}

Triangle.java:

public class ClassExamples {
public static void main(String[] args) {

Triangle myTri = new Triangle();

myTri.setBase(17.348);
myTri.setHeight(104.6);

System.out.println("Triangle myTri: " + myTri);
}

}

ClassExamples.java:

WIT COMP1000 44

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Objects as Arguments

§ Objects can be used as method parameters, just like
int, double, etc
»We've seen numerous examples of this

» Most recently when we passed Scanner and PrintWriter
objects as arguments into methods

§ Unlike primitive types, objects are passed into
methods by reference

§ This means that changes made to an object in a
method are actually modifying the object in the calling
method (just like arrays, which are actually objects!)

WIT COMP1000 45

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Object as Arguments

public class Temperature {
private double tempC;
public void setCelsius(double tempCelsius) {

tempC = tempCelsius;
}
public void setFahrenheit(double tempF) {

tempC = (5.0 / 9.0) * (tempF - 32);
}
public double getCelsius() {

return tempC;
}
public double getFahrenheit() {

return ((9.0 / 5.0) * tempC) + 32;
}
public String toString() {

String o = String.format("%.2f C", tempC);
o += String.format(" (%.2f F)",

getFahrenheit());
return o;

}
}

Temperature.java: import java.util.InputMismatchException;
import java.util.Scanner;

public class ClassExamples {

public static void getTemperature(Scanner input, Temperature t) {
System.out.print("Enter a temperature in Fahrenheit: ");
try {

t.setFahrenheit(input.nextDouble());
} catch (InputMismatchException ex) {

System.out.println("Invalid temperature!");
System.exit(0);

}
}

public static void main(String[] args) {
Scanner keyboardInput = new Scanner(System.in);
Temperature myTemp = new Temperature();

getTemperature(keyboardInput, myTemp);

System.out.println("That is " + myTemp);
}

}

ClassExamples.java:

WIT COMP1000 46

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Objects in Class Methods
§ You can also pass in objects as method arguments to

class methods of the same class as the object

§ It's easy to get confused in these situations because
there are multiple objects of the same type
» The argument object and the object that was used to invoke

the method in the first place

§ Objects of the class type can be created and returned
from within a method of that class as well
» For example, to return a new object of that type

» It's even easier to get confused in this situation

WIT COMP1000 47

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Objects in Class Methods

public class ClassExamples {
public static void main(String[] args) {

Temperature t1 = new Temperature();
Temperature t2 = new Temperature();
Temperature t3 = new Temperature();

t1.setCelsius(50);
t2.setFahrenheit(50);
t3.setTemperature(t2);

Temperature t4 = t1.plus(t3);

System.out.println(t1 + " + " + t3 + " = " + t4);
}

}

ClassExamples.java:

public class Temperature {
private double tempC;
public void setTemperature(Temperature other) {

tempC = other.tempC;
}
public Temperature plus(Temperature other) {

Temperature result = new Temperature();
result.tempC = tempC + other.tempC;
return result;

}
public void setCelsius(double tempCelsius) {

tempC = tempCelsius;
}
public void setFahrenheit(double tempF) {

tempC = (5.0 / 9.0) * (tempF - 32);
}
public double getCelsius() {

return tempC;
}
public double getFahrenheit() {

return ((9.0 / 5.0) * tempC) + 32;
}
public String toString() {

String o = String.format("%.2f C", tempC);
o += String.format(" (%.2f F)",

getFahrenheit());
return o;

}
}

Temperature.java:

WIT COMP1000 48

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

The this keyword

§ There is a special keyword that can be helpful when
you need to refer to the "current" object within a class
method

§ The this keyword

§ It is particularly useful to clarify which object you are
accessing when there are multiple objects

§ You will never be required to use it in this course, but
if you find it useful then take advantage of it
» In other words, if it makes sense to you then use this and

if not then don't

WIT COMP1000 49

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: this

public class ClassExamples {
public static void main(String[] args) {

Temperature t1 = new Temperature();
Temperature t2 = new Temperature();
Temperature t3 = new Temperature();

t1.setCelsius(50);
t2.setFahrenheit(50);
t3.setTemperature(t2);

Temperature t4 = t1.plus(t3);

System.out.println(t1 + " + " + t3 + " = " + t4);
}

}

ClassExamples.java:

public class Temperature {
private double tempC;
public void setTemperature(Temperature other) {

this.tempC = other.tempC;
}
public Temperature plus(Temperature other) {

Temperature result = new Temperature();
result.tempC = this.tempC + other.tempC;
return result;

}
public void setCelsius(double tempCelsius) {

tempC = tempCelsius;
}
public void setFahrenheit(double tempF) {

tempC = (5.0 / 9.0) * (tempF - 32);
}
public double getCelsius() {

return tempC;
}
public double getFahrenheit() {

return ((9.0 / 5.0) * tempC) + 32;
}
public String toString() {

String o = String.format("%.2f C", tempC);
o += String.format(" (%.2f F)",

getFahrenheit());
return o;

}
}

Temperature.java: Using this refers to the
object that was used to

invoke the method

Using this refers to the
object that was used to

invoke the method

In this invocation of
plus(), this will

refer to t1

WIT COMP1000 50

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Constructors

§ Constructors are special class methods that are used
for initialization, to construct an object

§ A class can have multiple constructors that have
different parameter lists, however any one object can
only be initialized with one constructor

§ The method name for a constructor is required to be
the same as the name of the class

§ Constructors have no return type (not even void)

§ Except under very special circumstances, constructors
should always be public

WIT COMP1000 51

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Constructor

public class Stock {
private int shares;
private double value;

public Stock(int initialShares, double initialValue) {
shares = initialShares;
value = initialValue;

}

public String toString() {
String output = String.format("#shares=%d, ", shares);
output += String.format("value=%.3f", value);
return output;

}
}

Stock.java:

Stock constructor with
two arguments

WIT COMP1000 52

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Calling a Constructor

§ Constructors are called automatically when you
create an object with new

§ They can not be called again after an object is
created

§ Only one constructor can be called per object,
and one constructor is always called

§ You specify the arguments to the constructor in
the parentheses when you create the object
»Example:
Stock goog = new Stock(10, 716.8);

WIT COMP1000 53

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Using the Constructor

public class Stock {
private int shares;
private double value;

public Stock(int initialShares, double initialValue) {
shares = initialShares;
value = initialValue;

}

public String toString() {
String output = String.format("#shares=%d, ", shares);
output += String.format("value=%.3f", value);
return output;

}
}

Stock.java:

public class ClassExamples {
public static void main(String[] args) {

Stock goog = new Stock(10, 716.8);

System.out.println("Google stock: " + goog);
}

}

ClassExamples.java:

This calls the Stock constructor,
just like any other method, and

passes in 10 for initialShares
and 716.8 for initialValue

WIT COMP1000 54

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Write a class named Account which has two
(private) data fields: the balance of the account
and the name of the account. Include a
constructor that allows you to set the name
and the initial balance of the account. Also
include a toString() method that puts both
the name and balance in the String. Write a
main() method to test the class.

WIT COMP1000 55

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Account {
private String name;
private double balance;

public Account(String accountName, double initialBalance) {
name = accountName;
balance = initialBalance;

}

public String toString() {
String output = name;
output += String.format(": $%.2f", balance);
return output;

}
}

Account.java:

public class ClassExamples {
public static void main(String[] args) {

Account checking = new Account("Checking", 0.93);
System.out.println(checking);

}
}

ClassExamples.java:

WIT COMP1000 56

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Multiple Constructors
§ You can define as many constructors as you

want for each class, so long as they conform to
the normal method rules

§ The parameter lists have to be different,
meaning different types or different numbers of
parameters
»Method overloading!

§ The correct constructor is automatically chosen
based on the arguments provided

WIT COMP1000 57

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public class ClassExamples {
public static void main(String[] args) {

Stock goog = new Stock(10, 716.8);
Stock msft = new Stock(52.84);
System.out.println("Google stock: " + goog);
System.out.println("Microsoft stock: " + msft);

}
}

public class Stock {
private int shares;
private double value;

public Stock(double initialValue) {
shares = 0;
value = initialValue;

}
public Stock(int initialShares, double initialValue) {

shares = initialShares;
value = initialValue;

}

public String toString() {
String output = String.format("#shares=%d, ", shares);
output += String.format("value=%.3f", value);
return output;

}
}

Example: Multiple Constructors
New constructor with a

single double
argument

Calling the new
constructor

Stock.java:

ClassExamples.java:

WIT COMP1000 58

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Default Constructor
§ One special constructor is the default constructor
§ This is the constructor used when no arguments are

provided when the object is created
» Example: Stock csco = new Stock();

§ If you define no constructors for a class, the compiler
automatically adds a default constructor that does
nothing
» That's how all of our previous examples worked

§ If you define any constructors for a class (not
necessarily a default constructor), the compiler does
NOT add a blank default constructor for you

WIT COMP1000 59

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public class ClassExamples {
public static void main(String[] args) {

Stock goog = new Stock(10, 716.8);
Stock msft = new Stock(52.84);
Stock csco = new Stock(); // build error
System.out.println("Google stock: " + goog);
System.out.println("Microsoft stock: " + msft);
System.out.println("Cisco stock: " + csco);

}
}

public class Stock {
private int shares;
private double value;

public Stock(double initialValue) {
shares = 0;
value = initialValue;

}
public Stock(int initialShares, double initialValue) {

shares = initialShares;
value = initialValue;

}

public String toString() {
String output = String.format("#shares=%d, ", shares);
output += String.format("value=%.3f", value);
return output;

}
}

Stock.java:

Example: No Default Constructor
No default constructor is
included, but there are

other constructors

No default constructor
means you can not create
a Stock object with no

arguments

ClassExamples.java:

WIT COMP1000 60

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: Default Constructor

public class ClassExamples {
public static void main(String[] args) {

Stock goog = new Stock(10, 716.8);
Stock msft = new Stock(52.84);
Stock csco = new Stock();
System.out.println("Google stock: " + goog);
System.out.println("Microsoft stock: " + msft);
System.out.println("Cisco stock: " + csco);

}
}

public class Stock {
private int shares;
private double value;

public Stock() {
shares = 0;
value = 0;

}
public Stock(double initialValue) {

shares = 0;
value = initialValue;

}
public Stock(int initialShares, double initialValue) {

shares = initialShares;
value = initialValue;

}

public String toString() {
String output = String.format("#shares=%d, ", shares);
output += String.format("value=%.3f", value);
return output;

}
}

Stock.java:

ClassExamples.java:

Default constructor
(no arguments)

Calling the default
constructor

WIT COMP1000 61

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public class ClassExamples {
public static void main(String[] args) {

User bbr = new User();
System.out.println(bbr);
bbr.setId(2716057);
bbr.setUsername("bender");
System.out.println(bbr);

}
}

ClassExamples.java:public class User {
private String username;
private int id;

public void setId(int newId) {
id = newId;

}
public void setUsername(String newUsername) {

username = newUsername;
}
public String toString() {

return username + ": " + id;
}

}

User.java:

Example: Automatic Default Constructor

No constructors defined, so
a default constructor that

does nothing is
automatically added

Default constructor is
called, which does nothing

and initializes no data
fields

WIT COMP1000 62

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise

§ Modify your Account class to include a default
constructor that sets the balance to $0.00 and
the name to "Account". Also add a method
named adjust() that allows you to adjust the
balance by a positive or negative amount. Test
the new methods in main().

WIT COMP1000 63

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public class Account {
private String name;
private double balance;

public Account() {
name = "Account";
balance = 0;

}
public Account(String accountName, double initialBalance) {

name = accountName;
balance = initialBalance;

}

public void adjust(double amount) {
balance = balance + amount;

}
public String toString() {

String output = name;
output += String.format(": $%.2f", balance);
return output;

}
}

Account.java:

public class ClassExamples {
public static void main(String[] args) {

Account checking = new Account("Checking", 0.93);
System.out.println(checking);
Account account = new Account();
account.adjust(1000);
account.adjust(-250);
System.out.println(account);

}
}

ClassExamples.java:

WIT COMP1000 64

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

One Last Detail: static vs Instance variables
§ All of the data fields we've defined in our classes so far

have been instance variables
§ This means that each object (instance of a class) has a

separate variable in memory for each data field
» For example, every Account object has its own name

variable and its own balance balance

§ The alternative is a static data field, where every
object of the class shares a single variable
» Only one variable in memory for all instances of the class
» If one object changes a static data field, all objects of that

class will be affected

WIT COMP1000 65

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: A static Data Field

public class User {
private String username;
private int id;
private static int numberOfUsers = 0;

public User(String newUsername) {
username = newUsername;
id = numberOfUsers;
numberOfUsers++;

}

public String toString() {
return username + ": " + id;

}
}

User.java:

public class ClassExamples {
public static void main(String[] args) {

User pjf = new User("fry");
User bbr = new User("bender");
User tl = new User("leela");
User jaz = new User("zoidberg");

System.out.println(pjf);
System.out.println(bbr);
System.out.println(tl);
System.out.println(jaz);

}
}

ClassExamples.java:

WIT COMP1000 66

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

static Data Fields in Memory
§ static data fields aren't tied to any one object like

instance data fields

address
"fry"

0
"bender"

1
"leela"

2

0x3b8000
0x3b8004

value variable

…

User.numberOfUsers
pjf.username
pjf.id
bbr.username

0x3b800c
0x3b8010
0x3b8018
0x3b801c
0x3b8024

User pjf = new User("fry");
User bbr = new User("bender");
User tl = new User("leela");

bbr.id
tl.username
tl.id

0x3b8028

0123

WIT COMP1000 67

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

static Class Methods
§ Class methods can also be static
» Like main() or other methods we've made earlier in the

semester

§ The meaning is similar: a static method is shared by
all instances of the class

§ A static method can NOT use or modify any
instance (non-static) data fields directly
» If you have a method that does not use or modify any

instance data fields, then make it static

§ A static method can be called from other methods
with the class name (not any particular object)

WIT COMP1000 68

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example: static Class Methods

public class User {
private String username;
private int id;
private static int numberOfUsers = 0;

public User(String newUsername) {
username = newUsername;
id = numberOfUsers;
numberOfUsers++;

}

public static int getNumberOfUsers() {
return numberOfUsers;

}

public String toString() {
return username + ": " + id;

}
}

User.java:

public class ClassExamples {
public static void main(String[] args) {

User pjf = new User("fry");
User bbr = new User("bender");
User tl = new User("leela");
User jaz = new User("zoidberg");

int totalUsers = User.getNumberOfUsers();
System.out.println("Total number of users: " + totalUsers);

System.out.println(pjf);
System.out.println(bbr);
System.out.println(tl);
System.out.println(jaz);

}
}

ClassExamples.java:

This method is static, and
therefore can't use the

username or id data fields

Calling the static method is done
with the class name (User) then a

dot then the method name
(getNumberofUsers())

WIT COMP1000 69

Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Wrap Up
§ A class defines a complex variable type
» Contains its own data fields and methods that are only for

use with objects of that class

§ There are many predefined classes in Java that we've
been using all semester including String, Scanner,
and PrintWriter

§ You can also define your own classes
» Often done to represent an entity in your program that

requires more than one variable

§ This is just the beginning of object oriented (OO)
software development

