
Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Physical Tuning

Lecture 12

22 March 2015

Physical Tuning

1

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Outline
•  Context
•  Influential Factors
•  Knobs

– Denormalization
– Database Design
– Query Design

22 March 2015

Physical Tuning

2

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Database Design and Implementation Process

22 March 2015

Physical Tuning

3

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Factors that Influence Physical Tuning
•  Attributes w.r.t. Queries/Transactions

–  Queried = potentially good for indexes
–  Updated = bad for indexes
–  Unique = could be indexed

•  Frequency of Queries/Transactions
–  80/20 rule
–  Updates

•  Performance Constraints w.r.t. Queries/Transactions
–  e.g. must complete within X seconds

•  Profiling

–  Storage allocation
–  I/O performance
–  Query execution time

22 March 2015

Physical Tuning

4

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Tools at Your Disposal
•  Indexes

– Covered in last lecture
– Note: there may be DBMS-specific configuration

settings that can improve performance

•  Denormalization
– Materialized views

•  Database design

•  Query design

22 March 2015

Physical Tuning

5

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Denormalization
•  The goal of normalization is to yield a database

schema that is free from redundancies

•  Depending upon performance constraints and the job
mix, sometimes it is appropriate to introduce
redundancies (i.e. denormalize to 1/2NF) in the name
of performance improvement (e.g. to avoid joins)

•  Note: a schema should always be fully normalized
first, and denormalization considered during physical
tuning upon analysis of constraints/performance
–  This technique should be deliberate and is not an excuse

for sloppy database design

22 March 2015

Physical Tuning

6

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Example: Employee Assignment Roster
ASSIGN(Emp_id,	 Proj_id,	 Emp_name,	
Emp_job_title,	 Percent_assigned,	 	 	 	
Proj_name,	 Proj_mgr_id,	 Proj_mgr_name)	

	
Proj_id	 →	 Proj_name,	 Proj_mgr_id	 	
Proj_mgr_id	 →	 Proj_mgr_name	 	
Emp_id	 →	 Emp_name,	 Emp_job_title	

EMP(Emp_id,	 Emp_name,	 Emp_job_title)	
PROJ(Proj_id,	 Proj_name,	 Proj_mgr_id)	 	
EMP_PROJ(Emp_id,	 Proj_id,	 Percent_assigned)	

22 March 2015

Physical Tuning

7

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Main Approaches to Denormalizing
•  Use a materialized view

– Create a new relation on disk, DBMS
responsible for automatically updating w.r.t.
base relations

•  Denormalize the logical data design
–  Implement constraints via DBMS

(e.g. triggers) or application logic

22 March 2015

Physical Tuning

8

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

•  Storing derived attributes
–  Every iPhone has a list of prior owners, each with a name

and e-mail. The price of the device depends upon how
many prior owners there have been.

•  Adding attributes to a relation from another relation
with which it will be joined
–  Profiling has shown us that every query on employee

project assignments has needed the project name.

•  Storing results of calculations on one or more fields
within the same relation
–  We need to store chemicals in base units (e.g. mL), but

our most frequent query depends upon larger units (e.g. L)

Common Denormalization Uses

22 March 2015

Physical Tuning

9

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Database Design Tuning
Denormalization is one method by which to
alter database design to achieve
performance goals

Others common approaches…
– Vertical partitioning
– Horizontal partitioning

22 March 2015

Physical Tuning

10

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Vertical Partitioning
Given a normalized relation [typically with many
attributes], break into two or more relations,
each duplicating the PK, but separating
attribute groups

Example:
•  Given R(K,A,B,C,G,H,…)	

– Knowing that (A,B,C)	 typically together, distinct
from (G,	 H,…)	

•  Yield R1(K,A,B,C) and R2(K,G,H,…)	

22 March 2015

Physical Tuning

11

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Horizontal Partitioning
Given a normalized relation [typically with many
rows], break into two or more relations, each
with the same columns, but a different subset
of rows

Example:
– Given ORDER(ID,REGION_ID,…)	

•  Knowing that typical queries are specific to a region
– Yield ORDER_R1(ID,…), ORDER_R2(ID,…), …

•  Will require multiple queries/UNION if all orders are to
be considered at once

22 March 2015

Physical Tuning

12

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Design Tuning
•  Indications

–  Profiling indicates too much I/O and/or time
–  The query plan (via EXPLAIN) shows that relevant indexes

are not being used

•  The following slides offer common situations in which
query tuning might be applicable. For any particular
DBMS, see vendor documentation and trade literature.

•  Generally speaking, do not attempt to pre-optimize for
these situations – let the DBMS/profiling tell you when
there is a problem (i.e. avoid premature optimization).

22 March 2015

Physical Tuning

13

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (1)
Many query optimizers do not use indexes in the presence of…

•  Arithmetic expressions
–  Salary/2000	 >	 10.50

•  Numerical comparisons of attributes of different sizes and precision
–  Aqty	 =	 Bqty, where Aqty is INTEGER and Bqty is SMALLINTEGER

•  NULL comparisons
–  ReportsTo	 IS	 NULL

•  Substring comparisons
–  Lname	 LIKE	 '%mann'

Some of this (e.g. arithmetic expressions) can be ameliorated with
denormalization

22 March 2015

Physical Tuning

14

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (2)
Indexes are often not used for nested queries using IN:

SELECT	 Ssn	 FROM	 EMPLOYEE	
WHERE	 Dno	 IN	 (SELECT	 Dnumber	 FROM	 DEPARTMENT	
WHERE	 Mgr_ssn	 =	 '333445555');	

The DBMS may not use the index on Dno in EMPLOYEE,
whereas using Dno=Dnumber in the WHERE-clause with a
single block query may cause the index to be used.

Introducing additional calls to your application may
alleviate this type of issue, assuming communication I/O
is not prohibitively expensive.

22 March 2015

Physical Tuning

15

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (3)
Some DISTINCTs may be redundant and
can be avoided without changing the result.
A DISTINCT often causes a sort operation
and must be avoided as much as possible

22 March 2015

Physical Tuning

16

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (4)
Avoid correlated queries where possible. Consider the following
query, which retrieves the highest paid employee in each
department:

SELECT	 Ssn	
FROM	 EMPLOYEE	 E	
WHERE	 Salary	 =	 (SELECT	 MAX(Salary)	
FROM	 EMPLOYEE	 M	 WHERE	 M.Dno=E.Dno);	

This has the potential danger of searching all of the inner
EMPLOYEE table M for each tuple from the outer EMPLOYEE table E

To make the execution more efficient, the process can be re-
written such that one query computes the maximum salary in
each department and then is joined

22 March 2015

Physical Tuning

17

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (5)
If multiple options for a join condition are
possible, choose one that avoids string
comparisons

For example, assuming that the Name
attribute is a candidate key in EMPLOYEE and
STUDENT, it is better to use EMPLOYEE.Ssn	 =	
STUDENT.Ssn as a join condition rather than
EMPLOYEE.Name	 =	 STUDENT.Name	

22 March 2015

Physical Tuning

18

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (6)
One idiosyncrasy with some query
optimizers is that the order of tables in the
FROM-clause may affect the join processing.
If that is the case, one may have to switch
this order so that the smaller of the two
relations is scanned and the larger relation
is used with an appropriate index.

Some DBMSs have commands by which to
influence query optimization (e.g. HINT)

22 March 2015

Physical Tuning

19

Wentworth Institute of Technology COMP355 – Databases | Spring 2015 | Derbinsky

Query Issues (7)
A query with multiple selection conditions that are connected via OR may not be
prompting the query optimizer to use any index. Such a query may be split up
and expressed as a union of queries, each with a condition on an attribute that
causes an index to be used. For example,

SELECT	 Fname,	 Lname,	 Salary,	 Age	 FROM	 EMPLOYEE	
WHERE	 Age	 >	 45	 OR	 Salary	 <	 50000;	

may be executed using table scan giving poor performance. Splitting it up as

SELECT	 Fname,	 Lname,	 Salary,	 Age	 FROM	 EMPLOYEE	
WHERE	 Age	 >	 45	
UNION	
SELECT	 Fname,	 Lname,	 Salary,	 Age	 FROM	 EMPLOYEE	
WHERE	 Salary<50000;	

may utilize indexes on Age as well as on Salary	

22 March 2015

Physical Tuning

20

