Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Final Review

Lecture 15

"B Final Review
i
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Format
Part 1 (50%) Part 2 (50%)
« Multiple choice e 2 programming problems
* Predict the output
Notes Notes
* One 8.5x11” (front/back) * One 8.5x11” (front/back)
page of notes page of notes
« All responses in pen . S_ubmission via Blackboard,
« No calculators, books, zipped source only

No calculators, books,
phones

* No Internet resources

computers, phones, etc.

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Content

Everythlng including...
All of COMP128
— Strings (C strings and string class)
— Command line arguments
— Vectors
— Pointers, dynamic arrays
— Structures, Classes, friend functions/classes, const correctness
— Operator overloading
» Assignment, extraction/insertion

— Code libraries/separate compilation
* Headers, include guards, type definitions, namespaces
— Linked lists, stacks/queues
— Recursion
+ Base case, recursive step
— Inheritance, polymorphism
* [Pure] virtual functions
— C++ kitchen sink
+ Exceptions, iterators, rng, casting, enumeration, pairs
* Deep vs. shallow copy, big three, copy constructor

MY Final Review

13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Strings

« C strings vs. string class
* Relevant libraries

* Declaration, initialization, accessing
characters

« Common functions (e.g. length,
concatenation, comparison, 1/O)

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Command Line Arguments

e argyv, argc
— Data types, meaning

/NS Final Review
Nty
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Vectors

e size Vvs. capacity
e atvs.[]
 push_back and automatic initialization

MY Final Review
Sty
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Pointers, Dynamic Arrays

 Declaration, *, &

 Static vs. dynamic allocation
— Stack vs. heap, memory leak
— NULL, new, delete

* Pointer-Array duality

— (ptr+i) = &arr[i], *(ptr+i)
* Dynamic arrays

— new, delete[]
* Multi-dimensional arrays

MY Final Review
1 5
13 April 2015

arr[i]

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Structures, Classes, friend, const

* Syntax
— Members, access levels, function definitions
— Declaration, initialization, access
— Pointer access: -> (*o0).
— Meaning/when to use: this

 Who can access what

* Encapsulation, information hiding
« Constructors (default), destructors
* Multiple meanings of const

/S8 Final Review
1 5
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Operator Overloading

* General syntax
« Automatic type conversion

* Binary, unary, extraction/insertion,
assignment

* Relationship to friend

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Code Libraries

 How to separate code into multiple files
— Remember include guards!

* What does #include do?
* What does a type definition do?

* What is a namespace?
— Different usage: using vs. :: vs. {}
— Common namespaces (e.g. std, global)

)
MY Final Review
1 5
13 April 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

 Define the member functions
for the Car class.

« Put it within the
transportation namespace.

» Convert the following code to a
proper code library +
application file using three
separate units (Car.h,
Car.cpp, main.cpp).

MY Final Review
Sty
13 April 2015

#tinclude <iostream>
using namespace std;

class Car

{

public:
Car(string make, string model);
string getMake() const;
string getModel() const;

friend ostream& operator <<(ostream&
outs, const Car& c);

private:
string make;
string model;

}s

int main()

{
Car c1("Toyota", "Prius");
cout << ¢l << endl;
// The Toyota Prius rocks!

}

Wentworth Institute of Technology

Car.h

#ifndef _ CAR_H
#define _ CAR_H

#include <string>
#include <ostream>

namespace transportation

{
class Car
{
public:
Car(std: :string make, std::string model);
std::string getMake() const;
std::string getModel() const;
friend std::ostream& operator
<<(std::ostream& outs, const Car& c);
private:
std: :string make;
std::string model;
}s
}
#endif

Final Review

13 April 2015

Answer

Car.cpp

#include "Car.h"

namespace transportation

{

Car::Car(std::string make, std::string model):

make (make), model(model) {}

std::string Car::getMake() const

{
return make;
}
std::string Car::getModel() const
{
return model;
}

std::ostream& operator <<(std::ostream& outs,
const Car& c)

{
outs << "The " << c.make
<< " " << c.model << " rocks!";
return outs;
}
}

COMP201 — Computer Science Il |

Spring 2015

main.cpp

#include <iostream>
#include "Car.h"

using namespace std;

int main()

{

transportation::Car c1("Toyota'

cout << cl << endl;
// The Toyota Prius rocks!

Derbinsky

'y "Prius");

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Linked Lists

* How to build/modify/use/deallocate
* Purpose of pointers

* Relationship to stacks/queues
— Basic operations
— How to implement via LL

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a function to add a node to the
beginning of a linked list of characters. Then
add the characters to spell the name of your
program using argv (and write a function to
print the contents of the list). Finally, write a
function to deallocate the list.

/SN Final Review
N7

13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il

Answer (1)

struct Node

{
char letter;
Node* next;
};
void add(Node*& head, char letter)
{
Node* temp = new Node;
temp->next = head;
temp->letter = letter;
head = temp;
}
void show(Node* head)
{
for (Node* n=head; n!=NULL; n=n->next)
cout << n->letter;
cout << endl;
}

/NS Final Review
i
13 April 2015

Spring 2015

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il

Answer (2)

void deallocate(Node*& head)

{
while (head != NULL)
{
Node* temp = head;
head = head->next;
delete temp;
}
}
int main(int argc, const char* argv[])
{
Node* head = NULL;
for (int i=strlen(argv[O@])-1; i>=0; i--)
add(head, argv[O][i]);
show(head);
deallocate(head);
return 0;
}

MY Final Review
i
13 April 2015

Spring 2015

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Recursion

« How to execute a recursive function
« How to write a recursive function
* Meanings: base case, recursive step

MY Final Review
Sty
13 April 2015

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wentworth Institute of Technology

Exercise

Examine the following sequence of numbers
and determine its pattern. Then write a C++

function to recursively generate any number
in the sequence.

7,15, 32,67, 138, ...

NS
/B8 Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

int f(int n)
{
if (n ==0)
return 7;
else
return 2*f(n-1) + n;

L]

/W Final Review
i

13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Inheritance

* Meaning: inheritance, polymorphism
 How to make a derived class

— How to use polymorphically
* Access levels: protected

» Constructor execution ordering
— Initializer lists

» Late binding via virtual
— Abstract classes

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Finish the code to make this program execute as shown.

class Diplomat

{
public:
Diplomat(string country): country(country) {}
friend ostream& operator <<(ostream& outs, const Diplomat& d)
{
outs << d.sayHi() << " from " << d.country;
return outs;
}
protected:
virtual string sayHi() const = 0;
private:
string country;
};

// your code here

int main(int argc, const char* argv[])

{
vector<Diplomat*> delegation;
delegation.push_back(new AmericanDiplomat()); // Howdy from The United States
delegation.push_back(new BritishDiplomat()); // Hello from Great Britain
delegation.push_back(new FrenchDiplomat()); // Bonjour from France

for (vector<Diplomat*>::iterator it=delegation.begin();
it!=delegation.end();
it++)

cout << *(*it) << endl;
delete *it;

}

delegation.clear();

return 0;

"B Final Review
i
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

class AmericanDiplomat: public Diplomat

{
public:
AmericanDiplomat(): Diplomat("The United States") {}
protected:
virtual string sayHi() const { return "Howdy"; }
};
class BritishDiplomat: public Diplomat
{
public:
BritishDiplomat(): Diplomat("Great Britain") {}
protected:
virtual string sayHi() const { return "Hello"; }
};
class FrenchDiplomat: public Diplomat
{
public:
FrenchDiplomat(): Diplomat("France") {}
protected:
virtual string sayHi() const { return "Bonjour"; }
}s;
-
B9 Final Review
o’

13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

C++ Kitchen Sink (1)

Exceptions: throws, try/catch
— What can you throw? Why?

Purpose of iterators?

— Basic usage

RNG: purpose?

— Function of a seed? Basic usage
Casting: purpose?

— Basic usage

Enumeration: purpose?

— Basic usage

MY Final Review
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

C++ Kitchen Sink (2)

» Pairs: purpose?
— Basic usage

* Deep vs. shallow copy

— Big Three
— Result w.r.t. memory

MY Final Review
Sty
13 April 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wrap Up

* You have now had exposure to most of the
beginner-moderate features of C++

— Much of these carry to many other languages

* You have also had a taste of computer
science data structures (e.g. Linked List,
Stack, Queue) and programming paradigms
(e.g. recursion, OOP)

* Thank you for working super hard this
semester :-)

MY Final Review
N
13 April 2015

