Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Recursion

Lecture 12

"B Recursion
Sy
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

What is Recursion

* A method of programming in which a

function refers to itself in order to solve a
problem

* Never necessary

— In some situations, results in simpler and/or
easier-to-write code

— Can often be more expensive in terms of
memory + time

1. Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Consider the factorial function

n

n!:szl*Z*S*...*n
k=1

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a factorial function that takes as
iInput an integer and returns as an integer
the result.

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

int factorial(int n)
{
int result = 1;
for (int i=2; i<=n; i++)
result *= i;

return result;

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Consider a Recursive Definition

0l =1

nl=n(n—-1)! whenn >1

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Conversion to Code

int factorial r(int n)
{
if (n == 0)
return 1;
else
return (n * factorial r(n-1));

i -
My Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

factorial r
return 1;

factorial r
return 1 * factorial_r(©);

factorial r
return 2 * factorial_r(1);

=~ Function Stack

factorial r
return 3 * factorial_r(2);

factorial r
return 4 * factorial_r(3);

main Stack
cout << factorial_r(4); Frame

®_ o B
&3 Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

factorial r
return 1 * 1;

factorial r
return 2 * factorial_r(1);

~— Function Stack

factorial r
return 3 * factorial_r(2);

factorial r
return 4 * factorial_r(3);

main Stack
cout << factorial_r(4); Frame

S _ o [
‘M. Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

factorial r
return 2 * 1;

~— Function Stack

factorial r
return 3 * factorial_r(2);

factorial r
return 4 * factorial_r(3);

main Stack
cout << factorial_r(4); Frame

S _ o [
‘M. Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

~— Function Stack

factorial r
return 3 * 2;

factorial r
return 4 * factorial_r(3);

main Stack
cout << factorial_r(4); Frame

s 3
My Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

~— Function Stack

factorial r
return 4 * 6;

main Stack
cout << factorial_r(4); Frame

s 3
My Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

How the Code Executes

~— Function Stack

main Stack
cout << 24; Frame

s 3
My Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a recursive function power that takes
In two integer arguments (base, exponent)
and returns base®xrorent ysing no libraries.
Assume exponent will be non-negative.

o [
MY Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

int power(int base, int exponent)
{
if (exponent == 0)
return 1;

return base *
power(base, exponent-1);

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a recursive function vertical digits
that outputs each digit of an integer to the
screen on its own line. For example:

vertical digits(1234);
1

™ Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il

Answer

void vertical digits(int n)

{
if (n < 10)

{
}

else

{

cout << n << endl;

vertical digits(n / 10);
cout << (n % 10) << endl;

i -
My Recursion

26 March 2015

| Spring 2015 |

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a recursive function vertical digits2
that outputs each digit of an integer to the
screen on its own line. For example:

vertical digits2(1234);
4
3
2
1

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il

Answer

void vertical digits2(int n)

{
if (n < 10)

{
}

else

{

cout << n << endl;

cout << (n % 10) << endl;
vertical digits2(n / 10);

i -
My Recursion

26 March 2015

| Spring 2015 |

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

In mathematics, the Fibonacci sequence is a sequence
of integers:

0,1,1,2,3,5,8,13, 21, ...

Or, more formally:
Fn = I'p_1+ Fn—2
Fo=0F =1

Write the recursive fibb function, which takes one
iInteger argument.

i -
‘M. Recursion

26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

int fibb(int n)
{
if (n==0)
return 0;
else if (n ==1)
return 1;
else
return fibb(n-1) + fibb(n-2);

M’ Recursion
26 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wrap Up

« Recursive functions refer to themselves

« Each recursive function should have one or
more base case, as well as a recursive step

» Recursion is never necessary (it can always
be implemented iteratively with a stack), but
often leads to simpler, easier-to-read code

1. Recursion
26 March 2015

