Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Stacks and Queues

Lecture 11

3 %% A

" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

More Data Structures

* |n this lecture we will use a linked list to
implement two abstract data types (ADT)

 An ADT provides the interface, or what a
data structure does

* We can then use code (e.g. other data
structures) to implement the interface

(i.e. the how)

$. 3
W7 stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Stacks
* A collection of items gz::g . ;
* Supports two primary push('C');
: pop(); // C
operations pop(): // B
— To push an item on [the top] pop(); // A
— To pop an item off [the top]
* Result: LIFO (last in, first out)
* Applications c
— Function stack
— Parsing languages B
— Backtracing (e.g. maze) A

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Interface: Stack of Characters

class CharStack

{
public:
// Initializes an empty stack
CharStack();
// Determines if the stack is empty
//
// Returns: true if the stack is empty
bool isEmpty();
// Pushes a character onto the stack
//
// PostConditions: the character c¢ is on
// the top of the stack
void push(char c);
// Pops the top of the stack
//
// PostConditions: the top of the stack is popped
// Returns: the character at the top of the stack,
// null character if the stack was empty
char pop();
}s5
s o
P Stacks and Queues
ez

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il |

Example: Reverse

#include <iostream>
#include <string>
#include "CharStack.h"
using namespace std;

int main()

{
CharStack s;

string word;
cin >> word;

for (int i=@; i<word.length(); i++)
s.push(word[i]);

while (!s.isEmpty())
cout << s.pop();
cout << endl; > ./reverse

ward
return 0; draw

022
/B! Stacks and Queues
\Srre?

Spring 2015

Derbinsky

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Implementing a Stack

* It turns out that a linked list is very useful
to implement the stack interface

* For the next set of slides, we will
implement the core member functions of a

stack assuming we have a functioning
singly linked list

NS 3
"WMl7 Stacks and Queues
24 March 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015 Derbinsky

Implementation

class CharSLL

class CharStack

{
public:
// Initializes an empty stack
CharStack();
// Determines if the stack is empty
//
// Returns: true if the stack is empty
bool isEmpty();
// Pushes a character onto the stack
//
// PostConditions: the character c is on
// the top of the stack
void push(char c);
// Pops the top of the stack
//
// PostConditions: the top of the stack is popped
// Returns: the character at the top of the stack,
// null character if the stack was empty
char pop();
private:
CharSLL 1;
}s

MY Stacks and Queues

24 March 2015

{

public:

}s

// Initializes an empty list
CharSLL();

// Releases all list memory
~CharSLL();

// Determines if the list is empty

//

// Returns: true if the list is empty
bool isEmpty();

// Adds a character to the front of the list

//
// PostConditions: c is at the head of the list

void addToFront(char c);

// Removes a character from the front of the list

//
// PostConditions: the character at the front of

// the list has been removed

// Returns: character at the front of the list,
// null character if the list was empty
char removeFromFront();

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Implement the isEmpty member function of
the CharStack class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

bool isEmpty()

{
return 1l.isEmpty();

3 %% A

" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Implement the push member function of the
CharStack class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

void push(char c)

{
l.addToFront(c);

3 %% A

" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Implement the pop member function of the
CharStack class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

char pop()
{

return 1l.removeFromFront();

3 %% A
" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Benefits of OOP

* By implementing a general linked list
class, implementing a general stack class
IS trivial
— In a moment we will see that a linked list can

also support another data structure — a queue!

* By encapsulating the code into classes,
we can develop general, tested code and
then use these as building blocks for more

complex systems

S
il g ? Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Queues
A collection of items enqueue(‘A’);
_ enqueue('B');
* Supports two primary enqueue('C');
. dequeue(); // A
operations dequeue(); // B
— To enqueue an item dequeue(); // C
— To dequeue an item
* Result: FIFO (first in, first out)
* Applications c
— Prioritization
— Parallelization C
C

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Interface: Queue of Characters

class CharQueue

{
public:
// Initializes an empty queue
CharQueue();
// Determines if the queue is empty
//
// Returns: true if the queue is empty
bool isEmpty();
// Enqueue's a character
//
// PostConditions: the character c is at
// the back of the queue
void enqueue(char c);
// Dequeue's a character
//
// PostConditions: the front of the queue is removed
// Returns: the character at the front of the queue,
// null character if the queue was empty
char dequeue();
}s5
PN &S
'8 Stacks and Queues
)

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Implementing a Queue

* It turns out that a doubly linked list is very
useful to implement the queue interface

— Need to be able to add to the back!

* For the next set of slides, we will
implement the core member functions of a
gqueue assuming we have a functioning

doubly linked list

1 oM
W7 stacks and Queues
24 March 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015 Derbinsky

Implementation

class CharDLL

class CharQueue

{
public:
// Initializes an empty queue
CharQueue();
// Determines if the queue is empty
//
// Returns: true if the queue is empty
bool isEmpty();
// Enqueue's a character
//
// PostConditions: the character c is at
// the back of the queue
void enqueue(char c);
// Dequeue's a character
//
// PostConditions: the front of the queue is removed
// Returns: the character at the front of the queue,
// null character if the queue was empty
char dequeue();
private:
CharDLL 1;
3
R

MY Stacks and Queues

24 March 2015

{
public:

};

// Initializes an empty list
CharSLL();

// Releases all list memory
~CharSLL();

// Determines if the list is empty

//

// Returns: true if the list is empty
bool isEmpty();

// Adds a character to the front of the list
//
// PostConditions: c is at the head of the list

void addToFront(char c);

// Adds a character to the tail of the list

//
// PostConditions: c is at the tail of the list

void addToBack(char c);

// Removes a character from the front of the list

//

// PostConditions: the character at the front of
// the list has been removed

// Returns: character at the front of the list,
// null character if the list was empty

char removeFromFront();

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Implement the isEmpty member function of
the CharQueue class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

bool isEmpty()

{
return 1l.isEmpty();

3 %% A

" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Implement the enqueue member function of
the CharQueue class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

void enqueue(char c)

{
1.addToBack(¢);

3 %% A
" Stacks and Queues
Sy

24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Implement the dequeue member function of
the CharQueue class.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

char dequeue()

{

return 1l.removeFromFront();

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Implement the CharQueue class using the
generic LinkedList class API from HWG.

=
Ml Stacks and Queues
24 March 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015

Answer

CharQueue.h

class CharQueue

{

public:

private:

};

Sy
24 March 2015

// Determines if the queue is empty

//

// Returns: true if the queue is empty
bool isEmpty();

// Enqueue's a character

//
// PostConditions: the character c is at
// the back of the queue

void enqueue(char c);

// Dequeue's a character

//

// PostConditions: the front of the queueu is removed
// Returns: the character at the front of the queue,
// null character if the queue was empty
char dequeue();

LinkedList<char> 1;

Stacks and Queues

CharQueue.cpp

bool isEmpty()
{

return l.empty();

}
void enqueue(char c)
{
1.addToBack(c);
}
char dequeue()
{
char return_char = "\0';
if (lisEmpty())
{
Node<char>* n = 1.first();
return_char = n->getData();
l.remove(n);
}
return return_char;
}

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wrap Up

* An abstract data type (ADT) provides the interface for
a data structure

« Astack is a LIFO collection, which supports pushing
to, and popping from, the front

 Aqueue is a FIFO collection, which supports enqueue
;c:o add to the back, and dequeue to remove from the
ront

« Taking advantage of OOP, you can easily implement
stacks and queues using linked lists

— Though other implementations are possible (e.g. arrays)

S
® i Stacks and Queues
24 March 2015

