Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Classes

Lecture 6

o)
. Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Context

* In the previous lecture we talked about
structures as tool to group variables into a
single useful type

» Classes build on this idea (encapsulation),
but with additional functionality’
— Functions
— Control over variable visibility

3

@
oy Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Terminology
* Like a struct, a class defines a data type

* Avariable whose type Is a class is called an
object (sometimes referred to as an instance

of the class)

 We have worked a lot with the string class
— each string variable is an object

string foo; // declaring the foo object,
// an instance of the string class

-
MY Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Encapsulating Code

« Structures allowed us to group together data
(in member variables)

» Classes have this ability, but also allow us to
bundle code as member functions

* This encapsulation allows us to provide safe
and useful functionality without others having
to know how the class operates
— str.length() vs. strlen(str) vs.ends in '\0°
—str.at(i) vs. str[i]

3
B #
oy Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Member Functions

Member functions are like any other
function, except:

* They are called with a specific object

* They have built-in access to the member
variables/functions of that object

string foo("Howdy!");
cout << foo.length();

3

M
.. Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Access Comparison

func(int a, char b, ..); obj.func(int a, char b, ..);
« Global variables/functions « Global variables/functions
cout cout
sqrt sqrt
* Arguments * Arguments
d d
b b
* Local variable(s) * Local variable(s)

 Member variables of obj
 Member functions of obj

* Pointer to obj
this

19 February 2015

Wentworth Institute of Technology

struct MyDate

{
string month;
int day;
int year;

}s5

void output(const MyDate& md)
{

cout << md.month << " "

<< md.day << ",
<< md.year << endl;

output(bday);

&3 pPN 0
oy Classes
\Srre?

19 February 2015

COMP201 — Computer Science Il | Spring 2015

Example

class MyDate

{
public:
string month;
int day;
int year;
void output()
{
cout << month << " "
<< day << ", "
<< year << endl;
}
}s
bday.output();

Derbinsky

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Example (also valid)

struct MyDate

{
string month;
int day;
int year;

}s5

void output(const MyDate& md)
{

cout << md.month <<

<< md.day << ",
<< md.year << endl;

output(bday);

s 3
oy Classes
\Srre?

class MyDate

{
public:
string month;
int day;
int year;
void output()
{
cout << this-»>month << " "
<< this->day << ", "
<< this->year << endl;
}
}s
bday.output();

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

When to Use this

* Required if an argument name conflicts
with a member variable name

« Optional to be explicit/clear about which
variable/function the code is accessing

-
MY Classes
19 February 2015

Wentworth Institute of Technology

class MyDate

{

public:

N7

string month;
int day;
int year;

void output()
{

cout << month <«
<< day << ", "

<< year << endl;

}

void setYear(int year)

{
}

this->year = year;

i Classes

19 February 2015

COMP201 — Computer Science |l

Example

Spring 2015

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Making Your Own Member Functions

1. Declare the function
2. Define the function

3. Use the function

o1
/NSl Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Declaring a Member Function

Same as declaring any other function, but must be done
within the class definition

class MyDate

{

public:
string month;
int day;
int year;

void output();
void setYear(int year);
int getCentury();

1
oy Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Defining a Member Function

« Similar to regular functions, there are two
options: define with declaration, or define
separately

* There are good reasons to separate
declaration from definition (we will cover
some of these later)

 For this class you should always define
separately, and remember to comment the
declaration (as well as any inline comments
you see fit in the definition)

3
B #
oy Classes
19 February 2015

Wentworth Institute of Technology

class MyDate

COMP201 — Computer Science Il |

Example

class MyDate

{
public:
string month;
int day;
int year;
void output();
};

Spring 2015

Derbinsky

{
public:
string month;
int day;
int year;
void output()
{
cout << month << " "
<< day << ", "
<< year << endl;
}
};
': ! Classes
v

19 February 2015

void MyDate: :output()

{
cout << month << " "
<< day << ", "
<< year << endl;
}

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Separate Member Function Definition

* When defining member functions, remember to
preface the function name with the class name and
scope resolution operator (: :)

<return> <class>::<function>(<args>)

{
}

* If you forget, C++ will attempt to define the function
without any connection to the class

— May lead to errors if the function accessed member
variables/functions

— Likely to cause a linker error for undefined symbol when
other code attempts to use the member function

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Using Member Functions

« Once a member function has been declared and defined, it
can be used like member variables via the dot (.) operator

MyDate bday;
bday.month = "March";
bday.day = 15;
bday.year = -44;
bday.output();

« When dealing with object pointers, you can dereference and
use the dot operator, or arrow shortcut

MyDate *d_p = &bday;
(*d_p) .output();
d_p->output();

o)
oy Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Create a class representing a circle. Add a
single member variable, radius. Add two
member functions to your circle class:
output () should print the value of the
member variable, area() should return the
area of the circle. Write a main function to
test the class.

3

@
.. Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

#include <iostream> int main()
using namespace std; {
class Circle Circle c;
{
public: c.radius = 2.0;
void output(); c.output();
double area(); cout << endl << "Area: "

<< c.area() << endl;
double radius;

}s return 0;
}
void Circle::output()
{
cout << "Radius: " << radius;
}
double Circle::area()
{
return (3.14159 * radius * radius);
}
b
Y Classes
ez

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

o)
. Classes

19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Danger!

* In the previous example, there is nothing
to prevent code from directly setting the

radius member variable of the class to a
negative value

A central tenant of Object Oriented
Programming (OOP) is information hiding

— Protects client code from unnecessarily

accessing aspects of the system, especially
those that may change over time

P
oy Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Member Access Level

* To support information hiding, C++
classifies every class member (variables
and functions) into a fixed access level

— public: accessible by all code

— private: accessible by member functions of
the class (and a friend, discussed later)

« | ater in the course we will discuss
Inheritance, which will involve a third
access level (protected)

3
B #
oy Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Why private?

By making members private, you ensure they
are not used outside of class member functions

— This is typically done for all variables

* Functions are made private if they are only used
iInternally in the class, and should not be called by
a programmer that is utilizing the class

* In other words, private members are used to
hide the implementation details of a class

3

M
.. Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Setting Member Access Level

« By default, all members of a class are private

* You change the level for one or more members by
placing the keyword above them with a colon

class my_class
{
int i; // private variable
public:
void some_func(); // public function
double x; // public variable
private:
int fun(int c); // private function
bool b; // private variable
public:
double y; // public variable

}s

1
oy Classes

19 February 2015

Wentworth Institute of Technology

#include <iostream>
using namespace std;

class NaturalNumber

{
public:

int get();
void set(int x);

private:
int x;

}s

void NaturalNumber::set(int x)

{
if (x>=0)
this->x = x;

}

int NaturalNumber::get()
{

return Xx;

COMP201 — Computer Science Il | Spring 2015

Example

int main()

{

NaturalNumber num;

num.set(7);
cout << num.get() << endl;

num.set(-1);
cout << num.get() << endl;

num.set(11);
cout << num.get() << endl;

return 0;

| Derbinsky

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Accessor and Mutator Functions

* You should almost always be making variables
private in your classes

« However, to be useful, client code will need at
least indirect access to some of these variables

 Functions that allow read access are called
accessor functions, sometimes getfters

 Functions that allow write access are called
mutator functions, sometimes setters

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Fix the Circle!

Create a class representing a circle. Add a
single member variable, radius. Add three
member functions to your circle class:
output () should print the value of the
member variable, area() should return the
area of the circle, and setRadius() should
allow client code to set a valid radius (>0).
Write a main function to test the class.

3
i P
oy Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015

Derbinsky

#include <iostream>

Answer

void Circle::setRadius(double radius)

using namespace std; {
if (radius > 0)
class Circle this->radius = radius;
{ }
public:
void output(); int main()
double area(); {
void setRadius(double radius); Circle c;
private: c.setRadius(2.0);
double radius; c.output();
}; cout << endl << "Area: "
<< c.area() << endl;
void Circle::output()
{ c.setRadius(-7.0);
cout << "Radius: " << radius; c.output();
} cout << endl << "Area: "
<< c.area() << endl;
double Circle::area()
{ return 0;
return (3.14159 * radius * radius); }
}

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

More Danger!

@ s 5 Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

More Danger!

In the previous example, there is nothing to
stop client code from using an accessor
function before the object is in a valid state

Circle c;
c.output(); // garbage!
cout << c.area(); // 3.14159 * garbage?

-
MY Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Constructors

 Constructors are special member functions that
are used for initialization

* A class can have multiple constructors that have
different argument lists, but each object can only
be Initialized with one constructor

« The function name for a constructor is the same
as the name of the class, there is no return value

« Except under very special circumstances,
constructors should always be public

% 3
B A
3y Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Calling a Constructor

* A constructor is called automatically when you
declare an object

— Also for dynamic allocation on new

* No constructor can be called after an object is
declared

* Only one constructor can be called per object, and
one constructor is always called

* You specify the arguments in parentheses after
the variable name

2 &P
i Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Example

#include <iostream> NaturalNumber: :NaturalNumber(int x)
using namespace std; {
if (x>=0)
class NaturalNumber this->x = Xx;
{ else
public: this->x = 0;
int get(); }
void set(int x);
NaturalNumber(int x); int main()
{
private: NaturalNumber num(3);
int x; cout << num.get() << endl; // 3
}s5
num.set(7);
void NaturalNumber::set(int x) cout << num.get() << endl; // 7
{
if (x>=0) num.set(-1);
this->x = x; cout << num.get() << endl; // 7
}
num.set(11);
int NaturalNumber::get() cout << num.get() << endl; // 11
{
return Xx; return 0;
} }
LN

1
. Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Fix the Circle! (2)

Create a class representing a circle. Add a
single member variable, radius. Add three
member functions to your circle class:
output () should print the value of the
member variable, area() should return the
area of the circle, and setRadius() should
allow client code to set a valid radius (>0).
Add a constructor that takes as an argument
the initial radius — if it isn’t valid, default to 1.
Write a main function to test the class.

$. 3
A @

i Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

#include <iostream>
using namespace std;

class Circle

{
public:
void output();
double area();
void setRadius(double radius);
Circle(double radius);
private:
double radius;
}s
void Circle::output()
{
cout << "Radius: " << radius;
}
double Circle::area()
{
return (3.14159 * radius * radius);
}

. Classes
Sy

19 February 2015

void Circle::setRadius(double radius)

{
if (radius > @0)
this->radius = radius;

}
Circle::Circle(double radius)
{
if (radius > @0)
this->radius = radius;
else
this->radius = 1;
}
int main()
{
Circle c(3);
c.output(); // 3
c.setRadius(2.0);
c.output(); // 2
c.setRadius(-7.0);
c.output(); // 2
return 9;
¥

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Multiple Constructors

* You can define as many constructors as you
want for each class, so long as they conform
to the normal function overloading rules

* The argument lists have to be different,

meaning different types or different numbers
of arguments

« C++ automatically chooses the correct
constructor based on the arguments provided

3
B #
oy Classes
19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Default Constructor

* One special constructor is the default constructor

* This is the constructor used when no arguments are
provided at object declaration

— Example: string str;

* |f you define no constructors for a class, the compiler
automatically adds a default constructor that does
nothing

 |f you define any constructors for a class (not
necessarily a default constructor), the compiler does
NOT add a blank default constructor for you

3

@
.. Classes
19 February 2015

Wentworth Institute of Technology

#include <iostream>
using namespace std;

class NaturalNumber

{
public:
int get();
void set(int x);
NaturalNumber();
NaturalNumber(int x);
private:
int x;
}s
void NaturalNumber::set(int x)
{
if (x >=0)
this->x = x;
}
int NaturalNumber::get()
{
return x;
}
&3 pPN 0
'@ Classes

19 February 2015

COMP201 — Computer Science Il | Spring 2015

Example

NaturalNumber: :NaturalNumber()

{
}

X = 0;

NaturalNumber: :NaturalNumber(int x)

{
if (x >=0)
this->x

1]
X
e

else
this->x

1
(O]
e

}

int main()

{

NaturalNumber num(3);
cout << num.get() << endl; // 3

num.set(7);
cout << num.get() << endl; // 7

NaturalNumber num2;
cout << num2.get() << endl; // ©

return 9;

Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Fix the Circle! (3)

Create a class representing a circle. Add a
single member variable, radius. Add three
member functions to your circle class:
output () should print the value of the member
variable, area() should return the area of the
circle, and setRadius() should allow client code
to set a valid radius (>0). Add a constructor that
takes as an argument the initial radius — if it
isn’t valid, default to 1. Also add a default
constructor that sets the radius to 1. Write a
main function to test the class.

$. 3
@) &P

i Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015

Answer

#tinclude <iostream>
using namespace std;

class Circle

{
public:
void output();
double area();
void setRadius(double radius);
Circle();
Circle(double radius);
private:
double radius;
};
void Circle::output()
{
cout << "Radius: " << radius;
}
double Circle::area()
{
return (3.14159 * pradius * radius);
}
Circle::Circle()
{
radius = 1;
}
e o

. Classes
Sy

19 February 2015

void Circle::setRadius(double radius)

{
if (radius > @0)
this->radius = radius;

}
Circle::Circle(double radius)
{
if (radius > 0)
this-»>radius = radius;
else
this->radius = 1;
}
int main()
{
Circle c(3);
c.output(); // 3
c.setRadius(2.0);
c.output(); // 2
Circle c2;
c2.output(); // 1
return 9;
}

| Derbinsky

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Destructors

« A destructor is an optional member function that is
called when a variable goes out of scope

— Also for dynamic allocation on delete

 The function name for a constructor is the same as the
name of the class, prefaced by the tilde (~) symbol,
there is no return value

* There can be up to one destructor, and it can take no
arguments

« Used to clean up after the class

— Especially useful to release any dynamically allocated
memory

2 &P
i Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015

Derbinsky

Example

#include <iostream> int main()
using namespace std; {
MemoryHog hogl(100);
class MemoryHog MemoryHog* hog2;
{
public: {
MemoryHog(int size); MemoryHog hog3(300);
~MemoryHog(); hog2 = new MemoryHog(200);
}
private:
int *array; delete hog2;
int size;
}; return 0;
}
MemoryHog: :MemoryHog(int size)
{
array = new int[size];
this->size = size;
cout << "Wasting " << size wasting 100 ints!
<< " ints!" << endl; . .
} ’ Wasting 300 ints!
L] L] '
MemoryHog: : ~MemoryHog () Wastlng 200 1nFS‘
{ Gave back 300 ints!
delete[] array; .
cout << "Gave back " << size Gave baCk 200 1ntS!
<< T intsi? << endl; Gave back 100 ints!
¥
L]

P
. Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Even More Danger!

P Classes
T4

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Even More Danger!

* In a previous lecture we learned how to
pass classes/structures by reference,
while protecting them from being changed

const type& object

 In order to adhere to this “contract” (i.e.
will not change the object), C++ needs to
know which member functions do not
change member variables

3
7 #
oy Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Motivating Example (1)

#include <iostream>
using namespace std;

class NaturalNumber

{
public:
int get();
void set(int x);
NaturalNumber();
private:
int x;
int gotten;
}s
void NaturalNumber::set(int x)
{
if (x >=0)
this->x = x;
}
int NaturalNumber::get()
{
gotten++; // changes this
return x;
}
&3 pPN 0
B Classes

19 February 2015

NaturalNumber: :NaturalNumber()

{
X = 0;
gotten = 0O;
}
void outputNumber (NaturalNumber& num)
{
cout << num.get() << endl;
}
int main()
{
NaturalNumber num;
outputNumber(num);
}

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015 | Derbinsky

Motivating Example (2)

#include <iostream>
using namespace std;

class NaturalNumber

{
public:
int get();
void set(int x);
NaturalNumber();
private:
int x;
int gotten;
}s
void NaturalNumber::set(int x)
{
if (x >=0)
this->x = x;
}

int NaturalNumber::get()

NaturalNumber: :NaturalNumber()

{
X = 0;
gotten = 9;

}

void outputNumber(const NaturalNumber& num)

{

cout << num.get() << endl;

}
int main()
{
NaturalNumber num;
outputNumber(num);
}

Compile Error

{ In function 'void outputNumber(const NaturalNumber&)':

gotten++; // changes this
return x;

fpermissive]

error: passing 'const NaturalNumber' as 'this' argument of
"int NaturalNumber::get()' discards qualifiers [-

cout << num.get() << endl;

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

The const Modifier (take 3)

* Place the const modifier after the
argument list in a member function
declaration and definition in order to
promise C++ that the function does not
change any member variables

* The compiler will now raise errors if this
promise is not kept, either directly or by
calling other non-const member functions

DI
/NSl Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il |

Spring 2015 | Derbinsky

Motivating Example (3)

#tinclude <iostream>

NaturalNumber: :NaturalNumber()

using namespace std; {
X = 0;

class NaturalNumber gotten = 0O;
{ }
public:

int get() const; void outputNumber(const NaturalNumber& num)

void set(int x); {

NaturalNumber(); cout << num.get() << endl;

}

private:

int x; int main()

int gotten; {
}; NaturalNumber num;

outputNumber(num);

void NaturalNumber::set(int x) }
{

if (x >=0)

this->x = x;

}
int NaturalNumber::get() const COm Ile Error
¢ gotten++; // changes this In member function 'int NaturalNumber::get() const':

return x; error: increment of member 'NaturalNumber::gotten' in read-
} only object

gotten++; // changes this

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Motivating Example (4)

#include <iostream>
using namespace std;

class NaturalNumber

{
public:
int get() const;
void set(int x);
NaturalNumber();
private:
int x;
int gotten;
}s

void NaturalNumber::set(int x)

{
if (x >=0)
this->x = x;

}

int NaturalNumber::get() const

{

return x;
}
::/ @ 0
ey Classes

19 February 2015

NaturalNumber: :NaturalNumber()

{
X = 0;
gotten = 0O;
}
void outputNumber(const NaturalNumber& num)
{
cout << num.get() << endl;
}
int main()
{
NaturalNumber num;
outputNumber(num); // ©
}

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Fix the Circle! (4)

Create a class representing a circle. Add a
single member variable, radius. Add three
member functions to your circle class:
output () should print the value of the member
variable, area() should return the area of the
circle, and setRadius() should allow client code
to set a valid radius (>0). Add a constructor that
takes as an argument the initial radius — if it
iIsn’t valid, default to 1. Also add a default
constructor that sets the radius to 1. Write a
main function to test the class. Make sure the
class satisfies const correctness.

$. 3
@) &P

i Classes
19 February 2015

Wentworth Institute of Technology

COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

#tinclude <iostream>
using namespace std;

class Circle

{
public:
void output() const;
double area() const;
void setRadius(double radius);
Circle();
Circle(double radius);
private:
double radius;
};
void Circle::output() const
{
cout << "Radius: " << radius;
}
double Circle::area() const
{
return (3.14159 * pradius * radius);
}
Circle::Circle()
{
radius = 1;
}
s o
. Classes
s

19 February 2015

void Circle::setRadius(double radius)

{
if (radius > @0)
this->radius = radius;
}
Circle::Circle(double radius)
{
if (radius > 0)
this-»>radius = radius;
else
this->radius = 1;
}
void outputCircle(const Circle& c)
{
c.output();
cout << endl;
cout << "Area: " << c.area() << endl;
}
int main()
{
Circle c(3);
outputCircle(c);
return 9;
}

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Structures Revisited

* |[n C++, a struct is actually a class with default
access level of public

— Technically, you can use structures for any situation in
which you can use a class

* In C, a struct only has public member variables
(like presented here)

* Thus, to avoid two keywords for a single concept,
most programmers in C++ will use classes for
OOP and only use structures if it is in the spirit of a
C structure (i.e. a record of public fields)

% 3
B A
3y Classes

19 February 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Create a class representing a sphere. Add a single member
variable, radius. Add four member functions to your circle class:
getRadius () should return the value of the member variable,
setRadius () should allow client code to set a valid radius (>0),
surfaceArea() should return the surface area of the sphere,
and volume() should return the volume of the sphere. Add a
constructor that takes as an argument the initial radius — if it isn’t
valid, default to 1. Also add a default constructor that sets the
radius to 1. Write a main function to test the class. Make sure the

class satisfies const correctness.
_ 2
Surface area: 4777“

Volume: —7'('7“3

19 February 2015

Wentworth In

stitute of Technology

COMP201 — Computer Science Il |

Spring 2015

Answer

#tinclude <iostream>
using namespace std;

class Sphere

{

public:
double
double
double
void s
Sphere
Sphere

private:
double

}s

double Sphere
{

}

return

double Sphere
{

}

return

double Sphere
{

}

return

getRadius() const;
surfaceArea() const;
volume() const;
etRadius(double radius);

(OH

(double radius);

radius;

::getRadius() const

radius;

::surfaceArea() const

(4.0*3.14159*radius*radius);

::volume() const

((4.0/3.0)*3.14159*radius*radius*radius);

. Classes

R
19 February

2015

void Sphere::setRadius(double radius)

Derbinsky

{
if (radius > @)
this->radius = radius;
}
Sphere: :Sphere()
{
radius = 1;
}
Sphere: :Sphere(double radius)
{
if (radius > @)
this->radius = radius;
else
this->radius = 1;
}
void outputSphere(const Sphere& s)
{
cout << "Radius: " << s.getRadius() << endl
<< "Surface Area: " << s.surfaceArea() << endl
<< "Volume: " << s.volume() << endl;
}
int main()
{
Sphere s(4);
outputSphere(s);
return 0;
}

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wrap Up

* A class defines a complex data type
— It encapsulates member variables and functions

— It abstracts away implementation from interface via
member access levels

e Constructors are member functions that execute
automatically to initialize an object

 Destructors are member functions that execute
automatically to clean up after an object

« Use of const correctness can keep object state safe
while simultaneously achieving efficient passing to as
function arguments

B &P
i Classes

19 February 2015

