Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Vectors

Lecture 3

D
. Vectors

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Motivation for Vectors

« So far, when we wanted to store many values
of the same type, we used an array

 However, we have seen that with arrays, we
need to know the size ahead of time, and
can’t adjust later

 The C++ vector class can be thought of as
an array that can grow and shrink while your
program is running

— Similar to the comparison between a C style
string and the string class

® [
iy Vectors

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Declaring a Vector

vector<type> name;

» Like an array, when you declare a vector, you provide a data
type for all elements

« This type parameter can be any valid data type (e.g. int,
double) as well as any class that has a default constructor

— We will revisit later how you can write classes that can work with
any type, called a template class.

« The vector class is defined within the library vector, and is part
of the std namespace, so don’t forget...

#include <vector>
using namespace std;

fo)
(E: Vectors

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Vector Size

* The size of a vector is how many elements
have been initialized
— Access this via the size function

* The default constructor creates an empty
vector (size = 0)

* You can create a vector with an initial size by
using a different constructor

vector<type> name(int initial size);
: 7 Vectors

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il

Example

#include <iostream>
#include <vector>
using namespace std;

int main()

{
vector<int> vi;
cout << vl.size() << endl; // ©
vector<double> v2(5);
cout << v2.size() << endl; // 5
return 0;

}

fo)
. Vectors

Spring 2015

Derbinsky

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Changing Vector Size

 The push_back function adds an element to
the end of the vector, increasing its size by 1

vector<int> v;
v.push _back(7);
cout << v.size(); // 1

* The resize(int new_size) function will
change the size of the vector
— If the new size is bigger, new elements are added

— |f the new size is smaller, then all but the first
new_size elements are |lost

® [
M. Vectors
23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Example

##include <iostream>
#include <vector>
using namespace std;

int main()

{

vector<int> v;
cout << v.size() << endl; // ©

v.push_back(7);
cout << v.size() << endl; // 1

v.resize(10);
cout << v.size() << endl; // 10

v.push_back(11);
cout << v.size() << endl; // 11

v.resize(2);
cout << v.size() << endl; // 2

return 0;
Py ®..3 I
S Vectors
s

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

New Vector Elements

* When using the constructor with an integer
argument, or the resize function to make the
vector bigger, new elements are initialized
automatically

* |f the vector type is a base type (e.g. int,
double), the initial value is 0

* |f the vector type is a class, then the default
constructor is utilized for initialization

o D
/B! Vectors
23 Januar y 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Accessing Vector Elements (1)

» Like an array, you can use the [] operator to
access any Initialized element of a vector

vector<int> v(10);
cout << v[@]; // ©
cout << v[10]; // badness

* Like the string class, the [] operator does not
perform bounds checking

— You may or may not get an immediate error when
accessing beyond the size of a vector, but your
program will likely not perform as expected

® [
M. Vectors
23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Accessing Vector Elements (2)

* As with the string class, you can use the
at function to access vector elements
safely (i.e. if a bad index is attempted, you
are guaranteed an error will result)
vector<int> v(10);
cout << v.at(@); // ©

cout << v.at(10); // error

®
| Vectors
23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a program that asks the user for a list
of positive integers. When the user ends the
list (by entering a value < 0), output the
sequence of numbers that they entered in
reverse, each number squared.

> Enter numbers: 1 2 3 5 10 -1
100 25 9 4 1

"B vectors
23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

#include <iostream>
#tinclude <vector>
using namespace std;

int main()
{
vector<int> v;
int next;
cout << "Enter numbers: ";
do
{
cin >> next;
if (next > 0)
v.push_back(next);
} while (next > @);

for (int i=(v.size()-1); i»>=0; i--)
cout << v[i]*v[i] << " ";

cout << endl;

return 0;

iar: \ectors
Sy

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Exercise

Write a program that asks the user for a
sequence of words. When the user ends the
list (by typing CTRL-D), output the sequence
INn reverse.

Enter words (end with CTRL-D): c++ is cool
cool is c++

s [
M Vectors
23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Answer

#include <iostream>
#include <string>
#include <vector>
using namespace std;

int main()

{
vector<string> v;
string next;
cout << "Enter words (end with CTRL-D): ";
while (cin >> next)
{
v.push_back(next);
}
for (int i=(v.size()-1); i>=0; i--)
{
cout << v[i] << " ";
}
cout << endl;
return 0;
}
oo
Sl Vectors
ez

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Vector Internals

* A vector keeps track of two pieces of related information: size
and capacity

 The size is the number of initialized elements; these are the
elements that can be accessed

« The capacity is the amount of memory allocated for elements;
this is always 2 size

— Get the capacity via the capacity function, though usually you
don’t directly need this information

* When the vector needs to grow, it doubles in size (you can'’t
rely upon this behavior, as it depends upon implementation)

— Alot of time is spent allocating memory and copying old data

— If you know you are going to add a lot of elements, you can
speed up your program via the reserve function

L] @
iy Vectors

23 January 2015

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Example

#include <iostream>
#include <vector>
using namespace std;

int main()

{

vector<int> v;
cout << v.capacity() << endl; // ©

v.reserve(1000);
cout << v.capacity() << endl; // 1000

for (int i=0; i<1000; i++)
{

v.push_back(i);

cout << v.capacity() << endl; // 1000
}

return 0;

. Vectors
Sy

23 January 2015

#include <iostream>
#include <vector>
using namespace std;

int main()

{

vector<int> v;
cout << v.capacity() << endl; // ©

// v.reserve(1000);
cout << v.capacity() << endl; // ©

for (int i=0; i<1000; i++)
{
v.push_back(i);
cout << v.capacity() << endl; // 1, 2, 4, 8

// 16, 32, ..
// 1024

return 0;

Wentworth Institute of Technology COMP201 — Computer Science Il | Spring 2015 | Derbinsky

Wrap Up

* A vector class can be thought of as an array
that grows/shrinks as necessary

* You can only access those elements that
have been initialized

Index < vector.size()

* You typically add elements to a vector one at
a time via push_back, and access them via
the [] operator or the at function.

® [
. Vectors
23 January 2015

