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Outline

1. Context
2. TD Learning
3. Issues
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Machine Learning Tasks

 Supervised

— Given a training set and a target variable, generalize;
measured over a testing set

 Unsupervised

— Given a dataset, find “interesting” patterns; potentially no
“right” answer

« Reinforcement

— Learn an optional action policy over time; given an
environment that provides states, affords actions, and
provides feedback as numerical reward, maximize the
expected future reward

* Never given /O pairs
* Focus: online (balancing exploration/exploitation)
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Success Stories
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Starting out - 10 minutes of training

The algorithm tries to hit the ball back, but
itis yet too clumsy te manage.
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The Agent-Environment Interface
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Pole Balancing
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Multi-Armed Bandit
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Types of Tasks

* Some tasks are continuous, meaning they
are an ongoing sequence of decisions

* Some tasks are episodic, meaning there
exist terminal states that reset the problem
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Policies

A policy is a function that associates a

probabillity with taking a particular action in a
particular state

(s, a)

The goal of RL is to learn an “effective”
policy for a particular task
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Objective

Select actions so that the sum of the
discounted rewards it receives over the
future is maximized

— Discountrate: 0<~vy<1
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Environmental Modeling

* An important issue in RL is state
representation

— Current sensors (observability!)
— Past history?

* A stochastic process has the Markov
property if the conditional probability
distribution of future states of the process
depends only upon the present state

— Given the present, the future does not depend on
the past

— Memoryless, pathless
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Implications of the Markov Property

Often the process is not strictly Markovian,

but we can either (i) approximate it as such
and yield good results, or (ii) include a fixed
window of history as state

Thus we can approximate
P(St—i—l — 8/7 T't41 — T’Sta Aty St—1,At—15---71,50, CL1)

via
P(3t+1 — 5/,7“t+1 — T‘St, at)
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Markov Decision Processes

If a process is Markovian, we can model it
as a 5-tuple MDP: (S, A, P(-,-),R(-,-),7)

— S: set of states

— A: set of actions

— P_(s, s): transition function
— R,(s, s'): immediate reward
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Recycling Robot MDP
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Value Functions

Almost all RL algorithms are based on
estimating value functions — functions of
states (or of state-action pairs) that estimate
how good it is for the agent to be in a given
state (or how good it is to perform a given
action in a given state)

Value functions are defined with respect to
particular policies
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State-Value Function
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Action-Value Function

Q" (s,a) = E;|Ri|s; = s,a; = al

O
— EW[Z 'YthJrk—l—l‘St — 5,4t = a]
k=0
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Example: Golf
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Temporal Difference (TD) Learning

e Combines ideas from Monte Carlo
sampling and dynamic programming

* Learns directly from raw experience
without a model of environment dynamics

» Update estimates based in part on other
learned estimates, without waiting for a

final outcome
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Visual TD Learning

opponent’s move
our move
opponent’'s move
our move
opponent's move

our move

Reinforcement Learning
November 24, 2015

ot W e W e W e Wil e

COMP4050 — Machine Learning

starting position

Fall 2015

Derbinsky

20



Wentworth Institute of Technology COMP4050 — Machine Learning | Fall2015 | Derbinsky

Q-Learning: Off-Policy TD Control

1. Initialize Q(s,a)

— Random, optimistic, realistic, knowledge
2. Repeat (for each episode):

a. Initialize s

b. Repeat (for each step of episode)
I.  Choose action via Q
li. Take action, observer, s’
ii. Q(s,a) < Q(s,a) +alr +ymaxQ(s’,a") — Q(s, a)]
Iv. s=¢§ "
until s is terminal
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Choosing Actions

* Given a Q function, a common approach
to selecting action is e-greedy

1. Select a random value in [0,1]

» If > ¢, take action with highest estimated value
» Else, select randomly

* In the limit, every action will be sampled
an infinite number of times
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Function Representation

* Given large state-action spaces, there is a
practical problem of how to sample the
space, and how to represent it

 Modern approaches include hierarchical
methods and neural networks
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Application: Michigan Liar’s Dice

« Multi-agent
opponents

« Varying degrees of
background
knowledge
— Opponent modeling

— Probabillistic
calculation

Available on the
D App Store
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Evaluation: Learning vs. Static
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Evaluation: Learning vs. Learned
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Evaluation: Value-Function Initialization
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Summary

* Reinforcement Learning (RL) is the problem
of learning an effective action policy for
obtaining reward

* Most RL algorithms model the task as a
Markov Decision Process (MDP) and
estimate the value of states/state-actions in a
value function

» Temporal-Difference (TD) Learning is one
effective method that is online and model-free
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