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Outline 
1.  Optimization 

–  Convexity 
2.  Linear regression in depth 

–  Locally weighted linear regression 
3.  Brief dips 

–  Logistic Regression  
•  [Stochastic] gradient ascent/descent 

–  Support Vector Machines (SVM) 
•  Kernel trick 

–  Neural Networks 
•  Backpropagation 
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What is Optimization? 
(and why do we care?) 
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General Definition 

minimize
x

f0(x)

s.t. f
i

(x)  0, i = {1, . . . k}
h

j

(x) = 0, j = {1, . . . l}
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Why Do We Care? 
•  Optimization is at the heart of many/most 

modern machine learning algorithms 

•  Example: Linear Regression 
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minimize
w

||Xw � y||2
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Linear Regression 

x	 y	

1	 1	

2	 3	

3	 2	

4	 4	

November 13, 2015 

Learning via Optimization

6 

Input Output 



Wentworth Institute of Technology COMP4050 – Machine Learning    |    Fall 2015    |    Derbinsky 

Linear Regression as Optimization 
•  Why this line? 

–  Minimizer error 

•  In 2D, the algorithm 
tries to find a slope 
and intercept that 
yields the smallest 
sum of the square of 
the error (SSE) 
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argmin
m,b

NX

i=1

e

2
i = (yi � (mxi + b))2
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Machine Learning via Optimization 
1.  Define an error function 
2.  Find model parameters that minimize the 

error function given the data 
–  Sometimes closed-form solution (e.g. linear) 
–  Sometimes [iterative] solution [with guarantees] 

(e.g. convex) 
–  Most of the time will require approximation 

•  Iteration (limited by number, delta) 
•  Softening constraints 
•  Post-processing 
… 

November 13, 2015 

Learning via Optimization

8 



Wentworth Institute of Technology COMP4050 – Machine Learning    |    Fall 2015    |    Derbinsky 

Optimization is Hard in General 
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Consider Many [Cursed] Dimensions 
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Consider Discontinuities  
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Optimizing Convex Functions is Easy 
•  The line segment 

between any two points 
on the graph of the 
function lies above or 
on the graph 

•  No more than one 
minimum (might be 
zero in an open set) 

•  Specialized algorithms 
exist to solve 
numerically (intuition: 
just go downhill!) 
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Plenty More About Convex Optimization 
•  Properties 
•  Analysis; how to 

prove if a set/function 
is convex 

•  Methods 

 
 
 
 
 
 
http://stanford.edu/~boyd/cvxbook/ 
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Linear Regression 
Recipe 
1.  Define error function 
2.  Find parameter 

values that minimize 
error given the data 
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Error Function 
Sum of Squared Error (SSE) 
aka Residual Sum of Squares (RSS) 
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SSEline =
NX

i=1

(yi � f(xi)) = (yi � (mxi + b))2
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Algebra (1) 

November 13, 2015 

Learning via Optimization

16 

SSEline =
NX

i=1

(yi � (mxi + b))2

=
NX

i=1

yi
2 � 2yi(mxi + b) + (mxi + b)2

=
NX

i=1

yi
2 � 2mxiyi � 2byi +m

2
xi

2 + 2mbxi + b

2
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Algebra (2) 
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so… 

NX

i=1

ai = Na

SSEline =
NX

i=1

yi
2 � 2mxiyi � 2byi +m

2
xi

2 + 2mbxi + b

2

= Ny

2 � 2Nmxy � 2Nby +Nm

2
x

2 + 2Nmbx+Nb

2
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Recall: Critical Points 
•  For a differentiable function of several 

variables, a critical point is a value in its 
domain where all partial derivatives are 
zero 

•  So to find the point at which error is 
minimized, we take partial derivatives of 
the error function w.r.t. the parameters, set 
these equal to 0, solve 
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Calculus (1) 
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SSEline = Ny

2 � 2Nmxy � 2Nby +Nm

2
x

2 + 2Nmbx+Nb

2

@SSEline

@m

= �2Nxy + 2Nmx

2 + 2Nbx = 0

@SSEline

@b

= �2Ny + 2Nmx+ 2Nb = 0
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Algebra (3) 
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0 = �2Ny + 2Nmx+ 2Nb

0 = �y +mx+ b

y = mx+ b

@SSEline

@b

= �2Ny + 2Nmx+ 2Nb = 0

(x, y)
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Algebra (4) 
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@SSEline

@m

= �2Nxy + 2Nmx

2 + 2Nbx = 0

(
x

2

x

,

xy

x

)

0 = �2Nxy + 2Nmx

2 + 2Nbx

0 = �xy +mx

2 + bx

xy = mx

2 + bx

xy

x

= m

x

2

x

+ b
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And Finally… 
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(x, y)

(
x

2

x

,

xy

x

)

m =
xy

x

� y

x

2

x

� x

=
xy � x̄ȳ

x

2 � x

2

y = mx+ b

b = y �mx
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A Quick Aside: Meaning of Slope (1) 
•  Covariance. A measure of how much two 

random variables change together 

 
–  If both X/Y increase relative to their means, 

positive; else negative 
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Cov(X,X) = Var(X)

Cov(X,Y ) = �(X,Y ) = E[(X � E[X])(Y � E[Y ])]
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Meaning of Slope (2) 

Cov(X,Y ) = �(X,Y ) = E[(X � E[X])(Y � E[Y ])]

= E[XY �XE[Y ]� Y E[X] + E[X]E[Y ]]

= E[XY ]� E[XE[Y ]]� E[Y E[X]] + E[E[X]E[Y ]]

= E[XY ]� E[X]E[Y ]� E[X]E[Y ] + E[X]E[Y ]

= E[XY ]� E[X]E[Y ]
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Meaning of Slope (3) 
Given data, we can approximate the 
expected value of a random variable by the 
sample mean 
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E[A] ⇡ A
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And Finally… 

But remember… 
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Cov(X,Y ) = E[XY ]� E[X]E[Y ]

= XY � ¯X ¯Y

m =
xy � x̄ȳ

x

2 � x

2

=
xy � x̄ȳ

xx� x̄x̄

m =

Cov(X,Y )

Cov(X,X)

=

Cov(X,Y )

Var(X)
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Evaluating Linear Regression 
The natural question to ask: to what extent 
is the line capturing the variation in y as a 
result of the variation in x 
•  To quantify: look at the ratio of the error of 

the line and the error of y 
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R2 = 1� SSEline

SSEY

SSEY = (y1 � Y )2 + (y2 � Y )2 + . . .
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The Multi-Dimensional Case 
•  The preceding discussion assumed a 

single independent variable (x), and thus 
derived a single slope (m) and intercept to 
linearly approximate the dependent 
variable (y) 

•  We now consider the multi-dimensional 
case, where each independent variable 
(xi) is associated with a slope/intercept 
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Problem Setup 
We begin with an analogous representation 

where… 
– Y is N x 1 
– X is N x (k+1); extra 1 to multiply intercept 
– B is (k+1) x 1; first intercept, then coefficients 
– e is N x 1 
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Y = XB + e
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k-Dimensional Linear Regression 
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y1	
y2	
.	
.	
.	
yN	

e1	
e2	
.	
.	
.	
eN	

b	
m1	
m2	
.	
.	
.	
mk	

1	x11	x12	.	.	.	x1k	
1	x21	x22	.	.	.	x2k	
.	.	
.	.	
.	.	
1	xN1	xN2	.	.	.	xNk	
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Step 1: Error Function 
•  We will use the same error method as last 

time, which is SSE (i.e. square the 
difference between Y and XB) 

November 13, 2015 

Learning via Optimization

31 

SSE = e|e
= (Y �XB)|(Y �XB)
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Matrix Algebra (1) 
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SSE = (Y �XB)|(Y �XB)

= (Y | �B|X|)(Y �XB)

= Y |Y � Y |XB �B|X|Y +B|X|XB

= Y |Y � 2Y |XB +B|X|XB
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Matrix Calculus (1) 
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SSE = Y |Y � 2Y |XB +B|X|XB

@SSE

@B
= �2X|Y + 2X|XB
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Matrix Algebra (2) 
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0 = �2X|Y + 2X|XB

�2X|XB = �2X|Y
X|XB = X|Y

B = (X|X)�1X|Y

Look	familiar?	
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Local Weighting 
•  One weakness of linear regression is that it 

weights all data points equally 

•  Locally Weighted Linear Regression 
(LWLR) introduces weights for each data 
point, allowing near points to “count more” 
than distal points 
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LWLR 
•  Weights computed as … 

•  Where W is an arbitrary weight matrix (all 
non-diagonal elements are zero); common 
to use a Gaussian weighting kernel 
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B = (X|WX)�1X|WY

W (i, i) = e
||x

i

�x0||
�2k2
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LWLR: Changing k 

November 13, 2015 

Learning via Optimization

37 

Weight Matrix Model 
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Linear Regression: Other Issues 
•  More features than data points 

– Computing the inverse without a full-rank 
matrix 

•  Shrinking coefficients/regularization 
– Ridge regression, the Lasso 

•  Uncertainty in X 
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Other Optimization-based ML Methods 
•  Logistic Regression 
•  Support Vector Machines (SVMs) 
•  Neural Networks 
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Logistic Regression 
•  Despite the name, the goal is binary 

classification 

•  The goal: find a set of weights to optimally 
transform input data to either side of a 
logistic/sigmoid function (later: why this fn) 
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�(x) =
1

1 + e

�x



Wentworth Institute of Technology COMP4050 – Machine Learning    |    Fall 2015    |    Derbinsky 

Basic Idea 
•  Take input data, multiply by a weight 

vector, compute output of sigmoid 
–  If                     , output 1; else 0 

•  The function is usefully bounded (vs. LR) 
– The sigmoid forms a decision boundary 

•  But what determines the “optimal” set of 
weights? An error function. 
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�(w|
x) � 0.5
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Logistic Regression: Error 

Intuition: if not correct, large smooth value 
– Based on MLE 
– Convex! 
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�y log(�(w

|
x))� (1� y) log(1� �(w

|
x))
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Gradient Descent 
•  Simple, iterative 

optimization algorithm 

•  Intuition: at each 
point, move a 
proportional step in 
the direction of the 
gradient 
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w := w + ↵rwf(w)
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Logistic Regression: Pseudocode 
•  Start with weights = 1 
•  Loop 

–  h = sigmoid(x * weights) 
–  error = (labels – h) 
–  weights = weights + alpha*x*error 

•  Notes 
–  Gradient (hence sigmoid fn):  
–  Iterate while improving 
–  Step size is an issue (small=slow, big=chaos) 

•  There is some theory; depends on the problem 
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(�(w|
x)� y)X
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Stochastic Gradient Descent 
•  Given large numbers of examples, 

gradient descent is typically not feasible 

•  Stochastic gradient descent uses only a 
single example each iteration, shuffling 
between passes 

•  Mini-batch is a compromise to take 
advantage of vectorization libraries 
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Support Vector Machines (SVM) 
•  Big picture: learn a 

separating hyperplane (if 
one exists) that maximizes 
the distance from it to the 
nearest data point on each 
side (the “support vectors”) 

•  Derivation involves a good 
deal of advanced theory/
methods (e.g. Lagrange 
multipliers, slack variables) 

•  Standard off-the-shelf 
classifier (e.g. libSVM) 
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Kernel Trick 
•  Kernel methods require only a user-

specified kernel (i.e. a similarity function) 
over pairs of data points in raw 
representation 
– Allows reasoning in a higher dimensional 

space without having to explicitly compute 
coordinates 

•  In SVM: Radial Basis Function (RBF) 
– Allows SVM to learn non-linear hyperplanes 
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Neural Networks 
•  Input nodes are connected to 

other nodes via weights 

•  Weights are summed, and 
then filtered through an 
activation function 

•  Training involves using errors 
from output neurons to update 
weights 
–  The backpropagation 

algorithm computes the gradient 
of the error function, which is 
then combined with an 
optimization algorithm (e.g. 
stochastic gradient descent) to 
incrementally update weights 
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Summary 
•  Optimization is a crucial component for modern 

machine learning algorithms 

•  To begin, define an error function, and then 
optimize this function with respect to input data 

•  Most interesting problems will not have closed-
form solutions, and will require iterative and/or 
approximate optimization techniques 
–  If the error function is convex, hill-climbing methods 

like [stochastic] gradient descent work well 
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