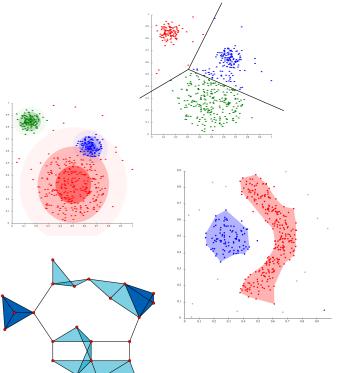
Derbinsky


k-Means Clustering

Lecture 6

Outline

- 1. Learning to find instance groups without supervision
- 2. The k-Means algorithm
- 3. Issues and limitations
 - Bias vs. Variance
- 4. Generalizations and connections


Clustering

- An **unsupervised** learning problem
- Goal: group a set of instances in such a way that objects in the same group (a cluster) are more similar (by some metric) to each other than to those in other clusters

Cluster Models

- Algorithms can be distinguished by several characteristics, including relationship between instance/cluster
 - Hard: binary relationship
 - Soft: weighted relationship
- And cluster assumptions
 - Centroid-based (e.g. k-Means)
 - Distribution-based
 - Density-based
 - Graph-based

Cluster Validation

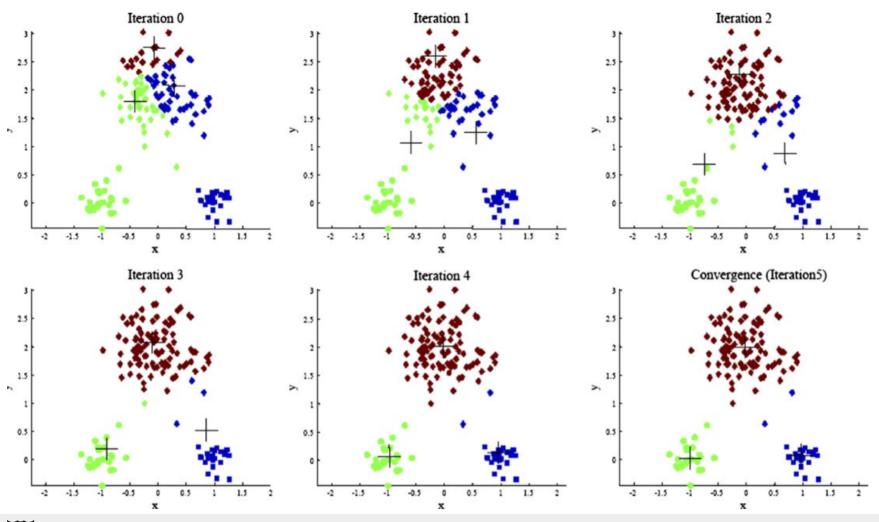
- Internal Validation
 - Similar to the idea of resubstitution error (i.e. use the dataset itself)
 - Dunn Index: maximize the ratio between the minimal inter-cluster distance to maximal intracluster distance
- External Validation
 - Similar to the idea of training/testing (i.e. require evaluation dataset + clusters/classifications)

k-Means

- Discovered by many researchers across numerous disciplines
 - You might see it referred to as a "problem" as opposed to an algorithm
- Centroid-based algorithm
 - Aims to minimize the within-cluster distances
 - Assumes instances are "spherically" oriented, variance of clusters is approximately equal
- Heuristic algorithm for NP-hard problem
 - It is computationally infeasible to find the "best" centroids for an arbitrary dataset

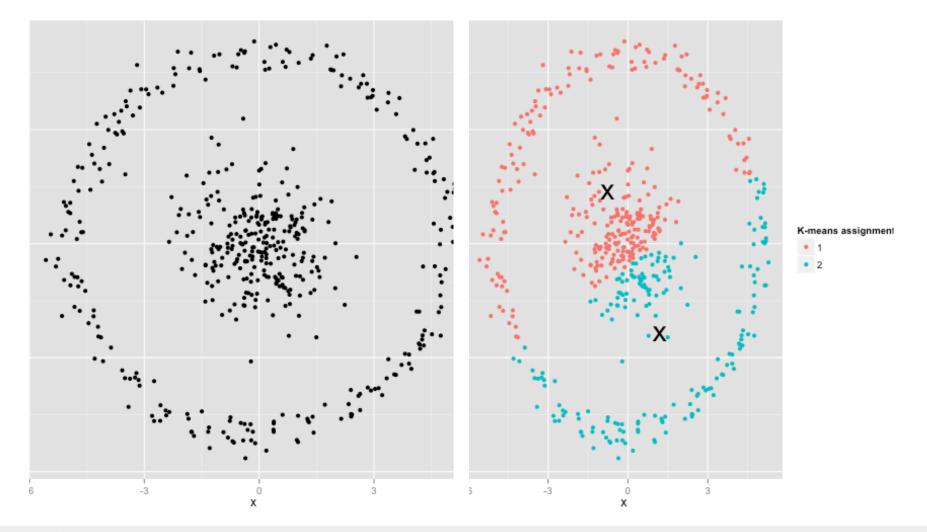
k-Means Clustering

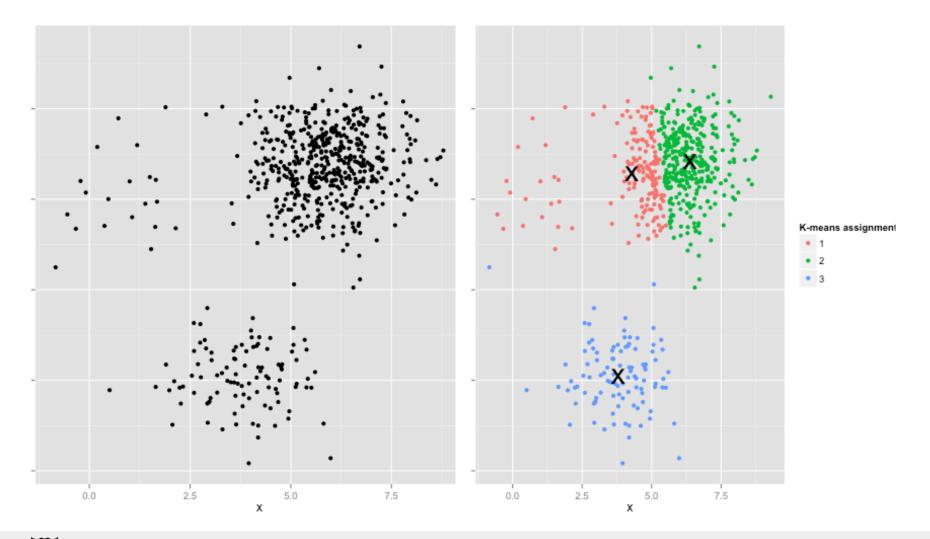
Algorithm Sketch


Inputs

- -k (number of centroids)
- df (distance function)

- 1. Initialize centroid positions
- 2. Repeat
 - For each instance, assign to *closest* centroid (via df)
 - If assignments haven't changed, done (converged)
 - For each centroid, relocate to mean of assigned instances


Example


k-Means Clustering

Breaking Assumptions (1)

Breaking Assumptions (2)

Distance Function

Classically this is the Euclidean distance function, which will in effect minimize the within-cluster sum of square error (WCSSE)

$$\sum_{i=1}^{N} (\arg\min_{k} || \boldsymbol{x_i} - \boldsymbol{c_k} ||_2^2)$$

Choosing k

- Ideally this comes from an understanding of the data
- Can be done empirically via trying values and evaluating WCSSE/cluster quality
 - Possibly need to regularize
 - Bias vs. variance
 - See papers on 30 metrics, learning k
- Post-processing of clusters can also help
 - Splitting large clusters
 - Merging clusters

Initializing Centroids

k-Means is very sensitive to initial positioning, and so repeated trials may be required

Common methods

- Forgy: set the positions of the k clusters to k randomly chosen instances
- Random partition: assign a cluster randomly to each instance and compute means

Computational Complexity

- NP-hard in general to optimally solve the objective function
- *k*-Means is $\mathcal{O}(nkdi)$
 - -n = # instances
 - -k = # clusters
 - -d = # dimensions
 - -i = # iterations till convergence
 - If structure exists, small; typically good ~ 12

k-Means Clustering

Variations

- *k*-mediods: rather than a mean, chooses best instance for next centroid location
- Nearest centroid classifier: run k-means on dataset, then 1-NN on clusters

Checkup

ML task(s)?

– Classification: binary/multi-class?

- Feature type(s)?
- Implicit/explicit?
- Parametric?
- Online?

Summary: *k*-Means Clustering

- Practicality
 - Easy, generally applicable
 - Suboptimal results if data does not satisfy assumptions
 - Very popular
- Efficiency
 - Considered linear in size of the dataset
- Performance
 - Heuristic, may need post-processing

k-Means Clustering