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Outline

1. Learning to find instance groups without
supervision

2. The k-Means algorithm

3. Issues and limitations
— Bias vs. Variance

4. Generalizations and connections
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Clustering

* An unsupervised learning problem

« Goal: group a set of instances in such a
way that objects in the same group (a
cluster) are more similar (by some metric)
to each other than to those in other
clusters
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Cluster Models

* Algorithms can be distinguished bK_severaI
|

characteristics, including relationship between
iInstance/cluster

— Hard: binary relationship
— Soft: weighted relationship

* And cluster assumptions | A
— Centroid-based (e.g. k-Means) =~
— Distribution-based S
— Density-based
— Graph-based
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Cluster Validation

* Internal Validation

— Similar to the idea of resubstitution error (i.e. use
the dataset itself)

— Dunn Index: maximize the ratio between the
minimal inter-cluster distance to maximal intra-
cluster distance

 External Validation

— Similar to the idea of training/testing (i.e. require
evaluation dataset + clusters/classifications)
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k-Means

* Discovered by many researchers across
numerous disciplines

— You might see it referred to as a “problem” as
opposed to an algorithm

Centroid-based algorithm
— Aims to minimize the within-cluster distances

— Assumes instances are “spherically” oriented,
variance of clusters is approximately equal

« Heuristic algorithm for NP-hard problem

— It is computationally infeasible to find the “best”
centroids for an arbitrary dataset
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Algorithm Sketch

Inputs
— k (number of centroids)
— df (distance function)

1. Initialize centroid positions

2. Repeat

— For each instance, assign to closest centroid (via df)
* If assignments haven’t changed, done (converged)

— For each centroid, relocate to mean of assigned
Instances
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Breaking Assumptions (1)
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Breaking Assumptions (2)

K-means assignmen
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Distance Function

Classically this is the Euclidean distance
function, which will in effect minimize the
within-cluster sum of square error (WCSSE)

N

> (argmin [|z; — cx[3)

i—1 K
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Choosing k

. ljdetally this comes from an understanding of the
ata

« Can be done empirically via trying values and
evaluating WCSSE/cluster quality

— Possibly need to regularize
* Bias vs. variance

— See papers on 30 metrics, learning k

« Post-processing of clusters can also help
— Splitting large clusters
— Merging clusters
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Initializing Centroids

k-Means is very sensitive to initial

positioning, and so repeated trials may be
required

Common methods

— Forgy: set the positions of the k clusters to k
randomly chosen instances

— Random partition: assign a cluster randomly
to each instance and compute means
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Computational Complexity

* NP-hard in general to optimally solve the
objective function

o k-Means is O(nkdi)
— n = # instances
— k = # clusters
— d = # dimensions

— i = # iterations till convergence
* |f structure exists, small; typically good ~ 12

k-Means Clustering
November 2, 2015 14



Wentworth Institute of Technology COMP4050 — Machine Learning | Fall2015 | Derbinsky

Variations

 k-mediods: rather than a mean, chooses
best instance for next centroid location

 Nearest centroid classifier: run k-means
on dataset, then 1-NN on clusters
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Checkup

* ML task(s)?

— Classification: binary/multi-class?
* Feature type(s)?
 Implicit/explicit?
 Parametric?
* Online?
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Summary: k-Means Clustering

* Practicality

— Easy, generally applicable
« Suboptimal results if data does not satisfy assumptions

— Very popular

 Efficiency
— Considered linear in size of the dataset

* Performance
— Heuristic, may need post-processing
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