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Outline 
1.  Bayes’ Rule 
2.  Learning via probability estimates 
3.  Feasibility via conditional independence 
4.  Estimating likelihoods 

–  Multinomial with smoothing 
–  Gaussian 

5.  Practical Issues 
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Axiom of Conditional Probability 

P (A,B) = P (A|B) · P (B)

= P (B|A) · P (A)
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Joint	Probability	

Condi/onal	Probability	
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Simple Example 
•  A = filled 
•  B = shape is square 
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Bayes’ Rule 
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P (A,B) = P (B,A)

P (A|B) · P (B) = P (B|A) · P (A)

P (A|B) =
P (B|A) · P (A)

P (B)

Posterior	
Likelihood	 Prior	

Evidence/Support	
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Why Does Bayes’ Rule Matter? 
Often we know/can estimate likelihood and prior 
information easier than the posterior 

Clinical example 
–  A: person has cancer 
–  B: person smokes 

Easy from historical data 
–  P(A) = 10% 
–  P(B) = 40% 
–  P(B|A) = 80% 
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P (Hypothesis|Data) =
P (Data|Hypothesis) · P (Hypothesis)

P (Data)

P (A|B) = 20%
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Learning via Probability Estimates 
•  Consider the posterior probability distribution over a 

discrete set of classes (C) and fixed set of features (x; 
each continuous or discrete) 

•  The maximum a posteriori (MAP) decision rule says to 
select the class that maximizes the posterior, thus… 
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P (Ck|x) =
P (Ck) · P (x|Ck)

P (x)

ŷ = argmax

k2{1...K}

P (Ck) · P (x|Ck)

P (x)
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Note 
•  The evidence term is only dependent on the data, and 

applies a normalizing constant (i.e. so the probabilities 
add to 1) 

•  For classification we care only about selecting the 
maximum value, and so we can maximize the 
numerator and ignore the denominator 
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ŷ = argmax

k2{1...K}
P (Ck)P (x|Ck)

P (x) =
X

k

P (x, Ck)

=
X

k

P (x|Ck) · P (Ck)
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How Much Data is Necessary? 

•  We can reasonably estimate the class prior 
via data (e.g. 2 classes ~ 100 points) 

•  However, likelihood is exponential 
– P({0,0,0…,0} | 0) x 100 
– P({0,0,0…,0} | 1) x 100 
– P({0,0,0…,1} | 0) x 100 
– P({0,0,0…,1} | 1) x 100 
... 
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ŷ = argmax

k2{1...K}
P (Ck)P (x|Ck)
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Feasibility via Conditional Independence 
•  The term naïve refers to the algorithmic 

assumption that each feature is conditionally 
independent of every other feature 
– This has the effect of reducing the necessary 

estimation data from exponential to linear 

•  In practice, while the independence 
assumption typically may not hold, Naïve 
Bayes works surprisingly well and is efficient 
for very large data sets with many features 
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Conditional Independence 
X is conditionally independent of Y given Z, 
if and only if the probability distribution 
governing X is independent of the value of Y 
given Z 
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(8i, j, k)P (X = xi|Y = yj , Z = zk) = P (X = xi|Z = zk)
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P (X,Y ) = P (X1, X2|Y )

= P (X1|X2, Y ) · P (X2|Y )

= P (X1|Y ) · P (X2|Y )

Deriving Naïve Bayes 
Consider the two-feature example: 

 
Now apply the conditional independence 
assumption… 

October 19, 2015 

The Naïve Bayes Classifier

12 

P (X,Y ) = P (X1, X2|Y )

= P (X1|X2, Y ) · P (X2|Y )
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More Generally… 

where… 
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P (X1, . . . , Xn|Ck) = P (X1|Ck) · P (X2, . . . , Xn|Ck, X1)

= P (X1|Ck) · P (X2|Ck, X1) · P (X3, . . . , Xn|Ck, X1, X2)

= . . .

P (Xi|Ck, Xj) = P (Xi|Ck)

P (Xi|Ck, Xj , Xq) = P (Xi|Ck)

P (Xi|Ck, Xj , Xq, . . .) = P (Xi|Ck)
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And so… 

ŷ = argmax

k2{1...K}
P (Ck) · P (x|Ck)

= argmax

k2{1...K}
P (Ck) ·

nY

i=1

P (xi|Ck)
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Parameter Estimation – Prior 
•  Default approach 

–  (# examples of class) / (# examples) 

•  Could also assume equiprobable 
– 1/(# distinct classes) 
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Parameter Estimation - Likelihood 
•  For discrete feature values, can assume a 

multinomial distribution and use the 
maximum likelihood estimate (MLE) 

•  For continuous values, a common 
assumption is that for each discrete class 
label the distribution of each continuous 
feature is Gaussian 

October 19, 2015 

The Naïve Bayes Classifier

16 



Wentworth Institute of Technology COMP4050 – Machine Learning    |    Fall 2015    |    Derbinsky 

Example 
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Dataset Input 

+	 +	 -	

-	 +	

+	 +	 -	

+	

+	

-	

-	

Shape	=	{Square,	Circle}	

Color	=	{Red,	Blue,	Black,	Orange}	

P (+) =
7
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P (�) =

5

12
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3

7

P (Square|+) =
5

7
P (Square|�) =

3

5

P (Blue|�) =
3

5

P (�|Blue, Square) = 5

12
· 3
5
· 3
5
= 0.15

P (+|Blue, Square) = 7

12
· 3
7
· 5
7
⇠ 0.18

P (x|+) =
3

7
· 5
7
⇠ 0.31

P (x|�) =
3

5
· 3
5
= 0.36

+	
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Additive Smoothing 
•  An issue that arises in the calculation is 

what to do when evaluating a feature 
value you haven’t seen (e.g.     ) 

•  To accommodate, use additive smoothing 
– d = feature dimensionality 
– α = smoothing parameter (≥0) 

•  0 = no smoothing 
•  <1 = Lidstone smoothing 
•  1 = Laplace smoothing 
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Example, Laplace Smoothing 
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Dataset Input 
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Shape	=	{Square,	Circle}	
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7
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5
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7
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0 + 1

5 + 4
=

1

9

P (x|+) =
1
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7
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Gaussian MLE Estimate 
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µ =
1

n

nX

i=1

xi

� =

vuut 1

n� 1

nX

i=1

(xi � µ)2

P (x) =
1p
2⇡�

e

� (x�µ)2

2�2

Humidity	 Mean	 Std.	Dev.	

Play		
Golf	

yes	 86	96	80	65	70	80	70	90	75	 79.1	 10.2	

no	 85	90	70	95	91	 86.2	 9.7	

P (humidity = 74|play = yes) =
1p

2⇡(10.2)
e
� (74�79.1)2

2(10.2)2 = 0.0344

P (humidity = 74|play = no) =

1p
2⇡(9.7)

e
� (74�86.2)2

2(9.7)2
= 0.0187

Humidity	=	74	
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Practical Issues 
•  When multiplying many small fractions 

together you may suffer from underflow, 
resulting in the computer rounding to 0 

•  To account for this, it is common to take 
the [natural] log of probabilities and sum 
them: log(a*b) = log(a) + log(b) 
– Remember: all we care about is the argmax 

for classification 
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Checkup 
•  ML task(s)? 

– Classification: binary/multi-class? 
•  Feature type(s)? 
•  Implicit/explicit? 
•  Parametric? 
•  Online? 

October 19, 2015 

The Naïve Bayes Classifier

22 



Wentworth Institute of Technology COMP4050 – Machine Learning    |    Fall 2015    |    Derbinsky 

Summary: Naïve Bayes 
•  Practicality 

–  Easy, generally applicable 
•  May benefit from properly modeling the likelihoods 

–  Very popular 

•  Efficiency 
–  Training: relatively fast, batch 
–  Testing: typically very fast 

•  Assuming cached distributions [parameters] 

•  Performance 
–  Optimal in some situations, often very good (common 

for use in NLP, such as spam detection) 
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