Model Evaluation

Lecture 3

Outline

- 1. Estimating error
- 2. Types of mistakes, ROC Curves

Model Evaluation

- When evaluating a model, one metric we can use is error on the training set (*resubstitution error*)
 - # misclassified / # training instances
 - Is this useful? (e.g. consider 1-NN)
- This motivates a test set, with which to characterize generalization of the model
 - Important that the testing data is never used to build the model!
 - More testing data = tighter confidence on generalization estimate

Validation Set

- One approach in an ML-application pipeline is to use a *validation* dataset (could be a *holdout* from the training set)
- Each model is built using just training; the validation dataset is then used to compare performance and/or select model parameters
- But still, the final performance is only measured via an independent test set

More Training Data = Better

- In general, the greater the amount of training data, the better we expect the learning algorithm to perform
 - But we also want reasonable amounts of validation/testing data!
- So how do we not delude ourselves, achieve high performance, and a reasonable expectation of future performance?

k-Fold Cross-Validation

- Basic approach
 - Divide the data into k randomly selected partitions (typically 10)
 - For each, use the fold as test data, the remainder as training data (i.e. repeat the train/test process k times)
 - Average results
- To control for unfortunate outcomes in random selection, consider repeating (e.g. 10 x 10-fold cross validation = 100 train/test)
 – Expensive!

Other Estimates

- Leave-One-Out
 - n-fold cross-validation, keeping only a single test instance per evaluation
- The 0.632 Bootstrap

$$\lim_{n \to \infty} (1 - \frac{1}{n})^n = \frac{1}{e} \approx 0.368$$

- Sample the training set with substitution n times: becomes the training set
- Any instance not selected becomes a test instance
- Estimate = 0.632(test error) + 0.368(train error)
- Average over several samples

Accuracy Issues

- Accuracy is often too simple a metric when characterizing algorithm performance
- Typical complications:
 - Skewed class distribution (change over time!)
 - Unequal classification error costs
- Examples
 - Airline screening
 - Fraud detection
 - Medical diagnosis

Classifier Performance

- Let us consider a binary classifier with only two classes: Positive, Negative
- Now consider the four possible outcomes (confusion matrix) True Class

Common Performance Metrics

Fall 2015

Precision/Recall

ROC Graph

Receiver Operating Characteristics

Reading ROC: (0,0)

Never issue a positive classification

- No possibility of FP
- But also no TP...

Reading ROC: (1,1)

Always issue a positive classification

- Catches all the TP
- But also full FP...

Reading ROC: (0,1)

Ideal classifier

- Catches all the TP
- But no FP's

Given two points on the graph, closer to (0,1) is considered "better"

 Useful for tuning meta-parameters

Conservative vs. Liberal

Conservative

- Positive classification only with strong evidence, lower FP
- More interesting in situations with many negative examples

<u>Liberal</u>

 Positive classification with weaker evidence, higher FP

Model Evaluation

Reading ROC: Random

- The line y = x represents random selection
 - Classifier has NO information
- Anything below has information, but using it "poorly"
 - How to better use E?

Example

C ₁ Output	Truth
F	Т
F	Т
F	Т
F	Т
Т	Т
Т	F
Т	F
F	F
F	F
F	F

Plot C₁ on an ROC curve

Ranking Classifier

- Many algorithms can output not only a class, but also a "score"
 - Sometimes this is probability/confidence, otherwise an arbitrary value sufficient to rank
 - Such as kNN voting!
- Committing to a classification threshold yields a point in ROC space
 - Incrementally shifting the threshold yields an ROC curve, characterizing algorithm performance

Example

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	р	.8	12	n	.39
3	n	.7	13	р	.38
4	р	.6	14	n	.37
5	р	.55	15	n	.36
6	р	.54	16	n	.35
7	n	.53	17	р	.34
8	n	.52	18	n	.33
9	р	.51	19	р	.30
10	n	.505	20	n	.1

- Produce the ROC curve
- What is the optimal threshold in terms of accuracy?
 0.54 = 70%

Model Evaluation

ROC Invariance

- Because ROC curve is based upon TP/FP rates, the representation is invariant to class distribution and error costs
- This can be ideal for choosing algorithms for applications in dynamic environments

Derbinsky

Convex Hull

- If we are comparing multiple algorithms in ROC space, the *convex hull* identifies the "best" classifier under "any" conditions
- Can disregard classifiers not on the CH (e.g. B, D)
- Can produce classifiers on the CH via proportional sampling

Area Under an ROC Curve (AUC)

- To compare classifiers, we can reduce the 2D ROC curve to a scalar AUC
 - Value between [0, 1]
 - Review: what range matters?
- FYI: related to other statistical tests
 - Wilcoxen test of ranks
 - -Gini + 1 = 2 x AUC

Example

Inst#	Class	Score	Inst#	Class	Score
1	р	.9	11	р	.4
2	р	.8	12	n	.39
3	n	.7	13	р	.38
4	р	.6	14	n	.37
5	р	.55	15	n	.36
6	р	.54	16	n	.35
7	n	.53	17	р	.34
8	n	.52	18	n	.33
9	р	.51	19	р	.30
10	n	.505	20	n	.1

Compute the AUC
 0.68

AUC Limitations

- B generally better $- AUC_B > AUC_A$
- But A is better for particular FP range (>0.6)

Model Evaluation

AUC for Discrete vs. Scoring

Proof

Example

C ₁ Output	Truth
F	Т
F	Т
F	Т
F	Т
Т	Т
Т	F
Т	F
F	F
F	F
F	F

Compute the AUC of the classifier that makes best use of the information in C₁ 0.6

ROC Issues Not Covered

- Efficient generation
- Ideal classifiers under particular conditions
- Confidence over ROC curves
- Multi-class classifiers

Summary

- When dealing with a fixed training set, make use of evaluation techniques to estimate error (k-fold cross validation)
- To characterize/compare classifier performance independent of class skew/ error costs, make use of ROC curves

