k-Nearest Neighbors

Lecture 2

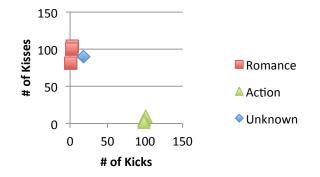
k-Nearest Neighbors

Outline

- 1. Learning via distance measurements
- 2. Model parameters
 - Bias vs. Variance
- 3. Extensions
 - Regression
 - Improving Efficiency

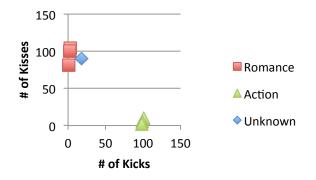
A Motivating Example

Movie Title	# of Kicks	# of Kisses	Type of Movie
California Man	3	104	Romance
He's Not Really into Dudes	2	100	Romance
Beautiful Woman	1	81	Romance
Kevin Longblade	101	10	Action
Robo Slayer 3000	99	5	Action
Amped II	98	2	Action
?	18	90	?



A Motivating Example

Movie Title	# of Kicks	# of Kisses	Type of Movie	L2 Distance
California Man	3	104	Romance	20.52
He's Not Really into Dudes	2	100	Romance	18.87
Beautiful Woman	1	81	Romance	19.24
Kevin Longblade	101	10	Action	115.28
Robo Slayer 3000	99	5	Action	117.41
Amped II	98	2	Action	118.93
?	18	90	?	0



k-Nearest Neighbors

kNN

Training

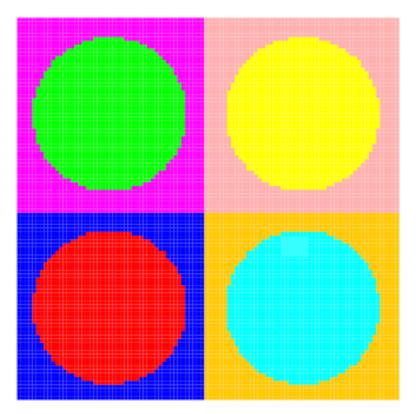
• Store examples

Testing

- Find the nearest *k* neighbors to target
 - Via distance function
- Vote on result

2D Multiclass Classification

Ground Truth



1-NN via Linear Scan

k-Nearest Neighbors

Model Parameters

- k number of neighbors to find
- $D(\mathbf{x}_1, \mathbf{x}_2)$ distance function
- $V({\mathbf{x}, y}) voting function$

Related

- Feature representation
 - Scaling
 - Curse of dimensionality
- Efficiency
 - Storage/search

k-Nearest Neighbors

Choosing k

- 1 = Nearest Neighbor
- Pro tip: if binary, choose odd to avoid ties
- Tradeoff: under/over-fitting
 - Small k: sensitive to noise
 - Large k: includes distal points

Bias vs. Variance Revisited

General

kNN

Model
$$y = f(x)$$
 as $\hat{f}(x)$

 $\operatorname{Err}(x) = \operatorname{Bias}^2 + \operatorname{Variance} + \operatorname{Irreducible Error}$

Bias =
$$f(x) - \frac{1}{k} \sum_{i=1}^{k} f(N_i(x))$$

Monotonically increases with k

$$\operatorname{Err}(x) = E[(Y - \hat{f}(x))^{2}]$$

Bias = $E[\hat{f}(x)] - f(x)$
Variance = $E[(\hat{f}(x) - E[\hat{f}(x)])^{2}]$
Irreducible Error = σ^{2}

Variance
$$=\frac{\sigma^2}{k}$$

Monotonically decreases with k

Example: <u>http://scott.fortmann-roe.com/docs/BiasVariance.html</u>

k-Nearest Neighbors

Common Distance Functions

- Manhattan (L1)
- Euclidean (L2)
- Cosine similarity
 - Useful in high dimensions: $cos(\theta) = \frac{A \cdot B}{||A|| ||B||}$
- Edit distance
- Graph traversal
 - Decay
- Modern: learn a useful distance measure!

Individual instance weighting

Issues with Distance Functions

- Categorical data
 - Indicator function is safe (i.e. Hamming Distance)
 - Pay attention to nominal features!
- Curses!
 - Euclidean becomes less discriminating in high dimensions
- Normalization
 - Consider a function over features
 - Annual salary
 - Height in meters
 - Common to scale features to [0, 1]

$$X_{\text{scaled}} = \frac{X - \text{Min}}{\text{Max} - \text{Min}}$$

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\boldsymbol{x}_i, y_i) \in D_z} I(v = y_i)$$

$$y' = \underset{v}{\operatorname{argmax}} \sum_{(\boldsymbol{x}_i, y_i) \in D_z} w_i \times I(v = y_i)$$

where $w_i = \frac{1}{d(\boldsymbol{x}', \boldsymbol{x}_i)^2}$

Useful if the nearest neighbors vary widely in their distance and the closer neighbors more reliably indicate the class of the object

k-Nearest Neighbors

Efficiency

Assume *N* training examples, *d* features...

• What is the computational cost of training a new instance?

 $\mathcal{O}(d) \sim \mathcal{O}(1)$

• How much space is required to store the model?

 $\mathcal{O}(N \cdot d)$

• What is the computational cost of predicting the result of a new test instance?

$$\mathcal{O}(N \cdot d)$$

Some Theory (Cover & Hart, 1967)

- **Bayes error rate** is the lowest possible error rate for a given class of classifier
 - Non-zero if the distributions of the instances overlap
 - More in later lectures
- As the amount of data approaches infinity, kNN is guaranteed to yield an error rate no worse than twice the Bayes error rate
- kNN is guaranteed to approach the Bayes error rate for some value of k (where k increases as a function of the number of data points)

Applying kNN to Regression

- Rather than voting on a label, the voting function produces a value
 - Average
 - Weighted average (w.r.t. distance)

Example: House Price Index

Age	Loan	House Price Index
25	\$40,000	135
35	\$60,000	256
45	\$80,000	231
20	\$20,000	267
35	\$120,000	139
52	\$18,000	150
23	\$95,000	127
40	\$62,000	216
60	\$100,000	139
48	\$220,000	250
33	\$150,000	264
48	\$142,000	?

k-Nearest Neighbors

http://www.saedsayad.com/k_nearest_neighbors_reg.htm

Improving Efficiency

- Filtered Storage
 - Condensed NN
- Intelligent Search
 - Space partitioning (k-d tree, R-tree)
- Approximate NN
 - Locality Sensitive Hashing
 - Boundary Forests

k-Nearest Neighbors

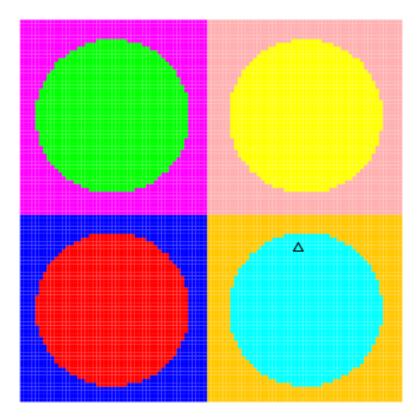
A 2D Classification Example

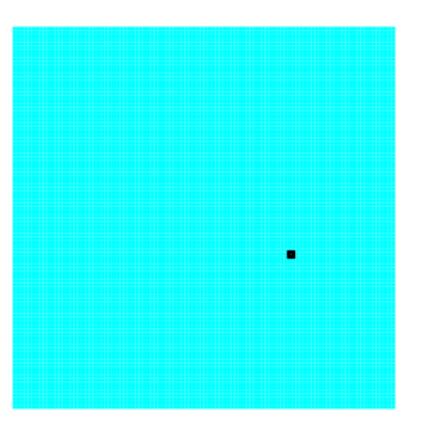


Interleaved Train/Query (1)

Ground Truth

Boundary Tree



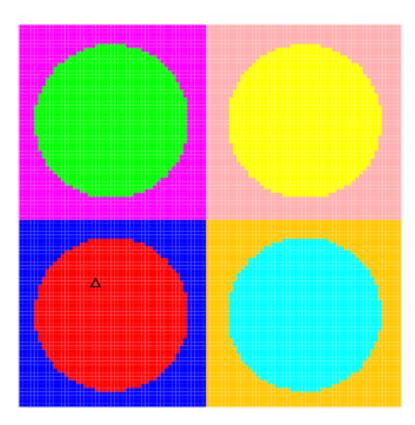


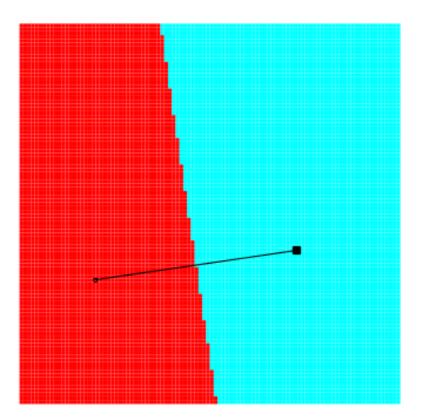
k-Nearest Neighbors

Interleaved Train/Query (2)

Ground Truth

Boundary Tree



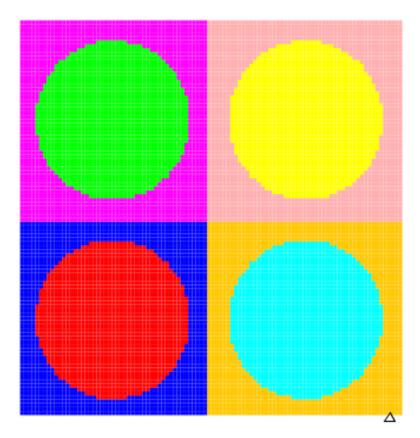


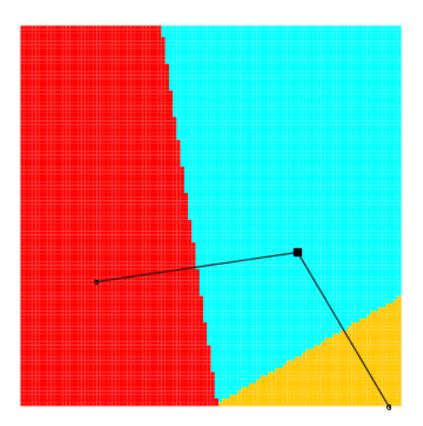
k-Nearest Neighbors

Interleaved Train/Query (3)

Ground Truth

Boundary Tree



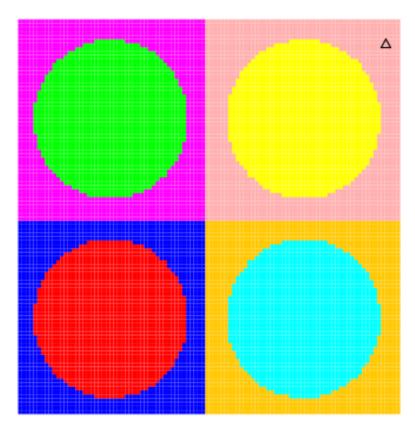


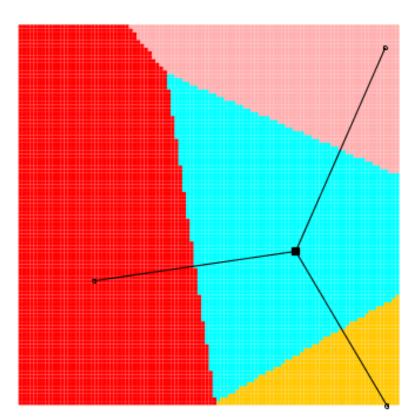
k-Nearest Neighbors

Interleaved Train/Query (4)

Ground Truth

Boundary Tree



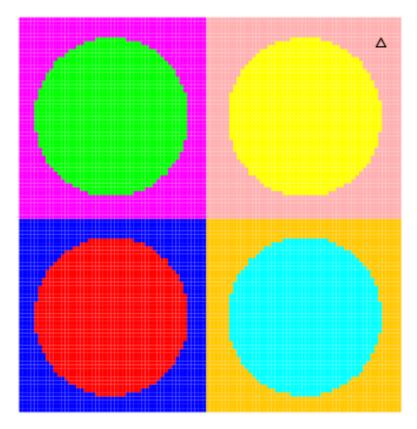


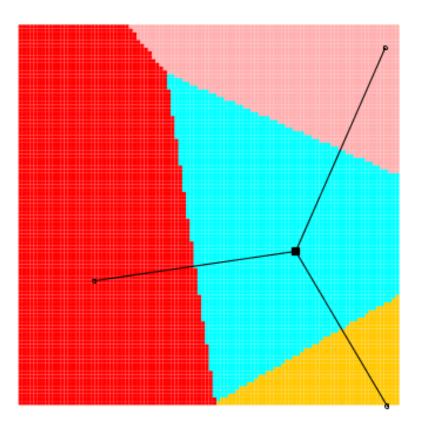
k-Nearest Neighbors

Interleaved Train/Query (5)

Ground Truth

Boundary Tree

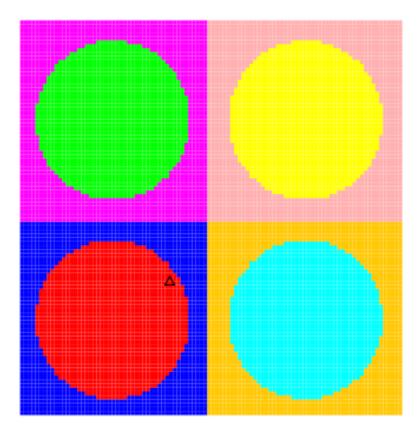


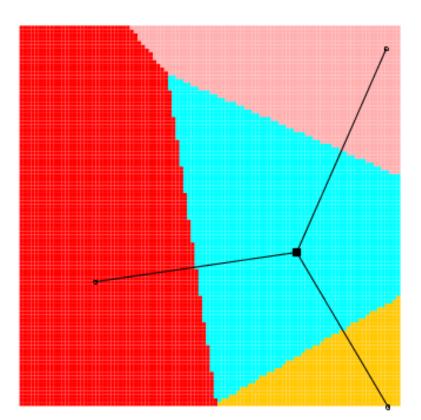


Interleaved Train/Query (6)

Ground Truth

Boundary Tree



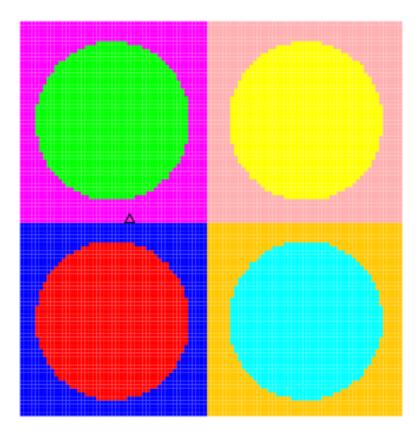


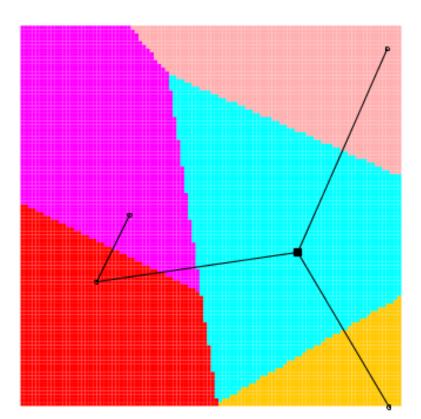
k-Nearest Neighbors

Interleaved Train/Query (7)

Ground Truth

Boundary Tree



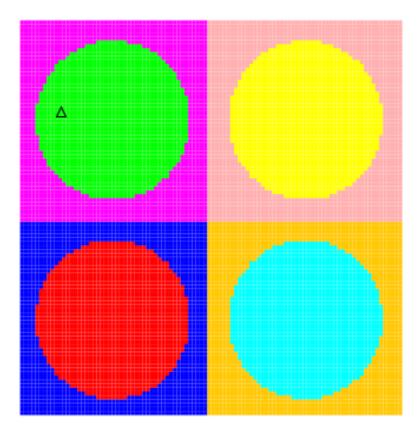


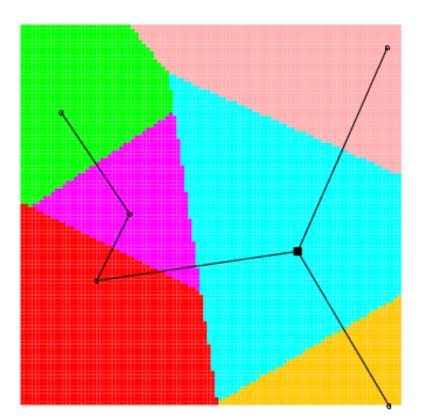
k-Nearest Neighbors

Interleaved Train/Query (8)

Ground Truth

Boundary Tree



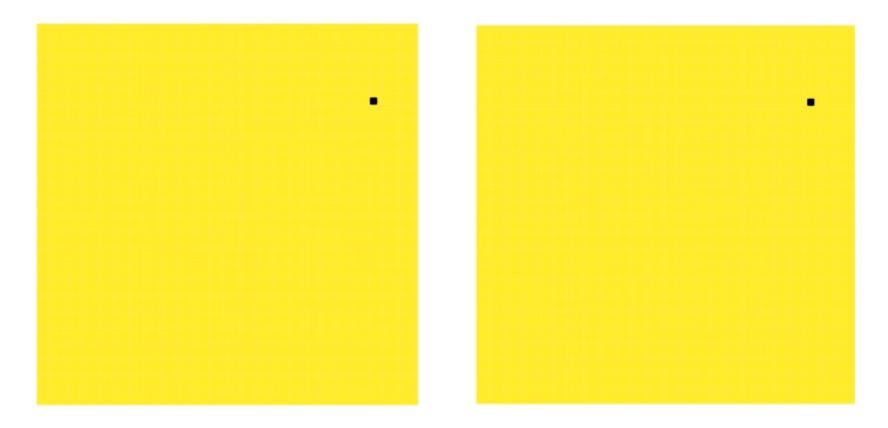


k-Nearest Neighbors

Performance & Scaling

Boundary Tree

1-NN via Linear Scan



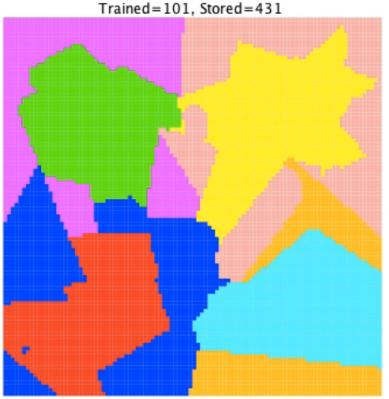
k-Nearest Neighbors

Fall 2015

Improving Accuracy via Forests Linear increase in memory + time

1 Tree

10000 test points: 69.57% in 4msec



10 Trees

10000 test points: 73.58% in 133msec

k-Nearest Neighbors

Algorithm Sketch Required Parameters

- n_t = number of trees
- k = maximum outdegree
 Typically leads to eventual logarithmic scaling
- d(x, y) = distance metric
 - Need not be true metric
 - No assumptions made about properties

Fall 2015

Algorithm Sketch Boundary Tree

Query(y)

Train(y)

- *v* = root
- loop
 - cand = children(v)
 - if |children(v)| < k
 - cand = cand U v
 - $v_{min} = argmin_{w < cand} d(w, y)$
 - if v_{min} = v: break;
 - $-v = v_{min}$

<u>Result</u>

- NN: *v_{min}*
- Classification: class(v_{min})
- Regression: value(v_{min})

• n = Query(y)

- if ShouldAdd(n, y)
 - Connect(n, y)

<u>ShouldAdd</u>

- NN: True
- Classification: Diff. Class
- Regression: Diff. by ε

k-Nearest Neighbors

Algorithm Sketch Boundary Forest

Query(y)

- for t_i : trees
 - result[i] = t_i.Test(y)

Train(y)

• for t_i : trees - t_i .Train(y)

Result

- NN: smallest d
- Classification: 1/d vote
- Regression: 1/d average

Initialization

- Root(t_i) = example[i]
- $r = remaining(n_t-1)$
 - t_i .Train(Rand(r, i))

Checkup

ML task(s)?

- Classification: binary/multi-class?

- Feature type(s)?
- Implicit/explicit?
- Parametric?
- Online?

Summary: kNN

- Practicality
 - Easy, generally applicable
 - Need know nothing about the underlying process
- Efficiency
 - Training: lazy
 - Testing: only for small datasets
 - Though there are methods to help scale
- Performance
 - Depends upon data/parameters (e.g. D, V, k, ...)
 - Bounded above by twice the Bayes error under certain reasonable assumptions; the error of the general kNN method asymptotically approaches that of the Bayes error and can be used to approximate it

