
 Wentworth Institute of Technology Engineering & Technology

WIT COMP1000

Variable Scope

WIT COMP1000 2

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Variable Scope

§ All variables have a set scope

» Parts of the code where that variable can be used

§ Variables declared in a method are local variables
for that method

» Can not be used outside of that method, i.e., can
not be used in other methods

§ Method parameter variables are treated as local
variables in that method

WIT COMP1000 3

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

import	java.util.Scanner;	
	
public	class	ClassExamples	{	
	

	public	static	void	main(String[]	args)	{	
	 	@SuppressWarnings("resource")	
	 	Scanner	input	=	new	Scanner(System.in);	

	
	 	System.out.print("Enter	an	integer:	");	
	 	int	input_value	=	input.nextInt();	

	
	 	int	result	=	factorial(input_value);	
	 	System.out.println(input_value	+	"!="	+	result);	
	}	

	
	public	static	int	factorial(int	n)	{	
	 	int	total	=	1;	
	 	while	(n	>	0)	{	
	 	 	total	=	total	*	n;	
	 	 	n--;	
	 	}	
	 	return	total;	
	}	

	
}	

Example
input is local to the

main() method

total is local to
the factorial()

method

n	is local to the
factorial()

method

input_value is
local to the main()

method

result	is local to
the main() method

WIT COMP1000 4

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Different Scopes == Different Variables

§ Variables in different scopes can have the same
name (and be different types)

§ They are different variables!

§ Two variables with the same name but in
different scopes are not related in any way

§ To avoid confusion, do not reuse variable
names in different methods or scopes

WIT COMP1000 5

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public	class	ClassExamples	{	
	

	public	static	void	main(String[]	args)	{	
	 	double	my_num	=	10.5;	
	 	double	res;	
	 	System.out.println("main():	my_num="	+	my_num);	
	 	res	=	myMethod();	
	 	System.out.println("main():	my_num="	+	my_num);	
	 	System.out.println("main():	res="	+	res);	
	}	

	
	public	static	double	myMethod()	{	
	 	double	my_num	=	75.32;	
	 	System.out.println("myMethod():	my_num="	+	my_num);	
	 	return	my_num;	
	}	

	
}	

Poor Example: Don't Do This!

my_num	is local
to the main()

method

my_num	is local to
the my_method()	

method

WIT COMP1000 6

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Class Scope Variables

§ Variables and constants can be placed in the
class scope by declaring them outside of all
methods, but still inside the {} for the class
» We'll look at some simple examples now and talk

more about this in detail later

» For now, most often useful for constants that are
used in multiple methods

§ Variables and constants can not be placed
outside of the class

WIT COMP1000 7

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Constants
§  It’s usually a good idea to name constants in your

program if they have some special meaning

§ By convention, variables names with all capital letters
are constants

§  Java includes final	"variables" to strictly enforce the
idea of a constant (value can not be changed after
initialization)

» Example: static	final	int	CENTS_PER_DOLLAR	=	100;	

» Generic form: static	final	TYPE	NAME	=	VALUE;	

§ We'll talk more about the meaning of static later	

WIT COMP1000 8

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example with a Class Scope Constant

public	class	ClassExamples	{	
	

	static	final	double	DOLLARS_PER_EURO	=	1.14;	
	

	public	static	void	main(String[]	args)	{	
	 	System.out.printf("5	dollars	is	%.2f	euros%n",	dollarsToEuros(5));	
	 	System.out.printf("5	euros	is	%.2f	dollars%n",	eurosToDollars(5));	
	}	

	
	public	static	double	dollarsToEuros(double	dollars)	{	
	 	return	dollars	/	DOLLARS_PER_EURO;	
	}	

	
	public	static	double	eurosToDollars(double	euros)	{	
	 	return	euros	*	DOLLARS_PER_EURO;	
	}	

}	

WIT COMP1000 9

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Exercise
§ Write a program that uses the famous E	=	mc2

formula to calculate mass and energy
equivalence in both directions

» Use a class scope constant for the value of c
(299792458 m/s)

» Write a method that calculates the energy given a
set amount of mass

» Write a method that calculates the mass given a
set amount of energy

» Write a main()	method to test each other method

WIT COMP1000 10

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer

public	class	ClassExamples	{	
	

	//	meters/sec	
	static	final	int	C	=	299792458;		

	
	public	static	void	main(String[]	args)	{	

	
	 	System.out.printf("1	kilogram	=	%.3f	joules%n",	energyFromMass(1));	
	 	System.out.printf("1000000000	joules	=	%.9f	kilograms%n",	massFromEnergy(1000000000));	
	 		
	}	

	
	public	static	double	energyFromMass(double	mass)	{	
	 	return	mass	*	C	*	C;	
	}	

	
	public	static	double	massFromEnergy(double	energy)	{	
	 	return	energy	/	(C	*	C);	
	} 		

}	

WIT COMP1000 11

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Class Scope Variable Gotcha

§  If you have a class scope variable and a local variable
in a method with the same name, the local variable
"hides" the class scope variable

§ The two variables are declared in different scopes, so
they are completely different variables

§ The class scope variable will not be accessible within
the same scope as a local variable that has the same
name

» Another reason not to use class scope variables for now!

WIT COMP1000 12

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public	class	ClassExamples	{	
	

	static	int	my_var	=	10;	
	

	public	static	void	main(String[]	args)	{	
	 	int	my_var	=	42;	
	 	myMethod();	
	 	System.out.println("main():	my_var="	+	my_var);	
	}	

	
	public	static	void	myMethod()	{	
	 	System.out.println("myMethod():	my_var="	+	my_var);	
	} 		

}	

Poor Example: Don't Do This!

my_var	is a class
variable and would be

accessible in all methods

my_var	is redeclared within
the main()	method here, so

any uses of my_var in
main()	will use the local
variable, not the class one

this use of my_var	is not
in the main()	method,
so it will use the class

variable

if you do use a class scope
variable, make it a

constant with final	(and
don’t' reuse the name!)

WIT COMP1000 13

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Other Scope Rules
§ Any variables declared within a code block

(everything between a set of braces {}), are
local to that block

§ Variables declared inside of an if-else block,
while	loop, or for	loop can only be used
inside of that block or loop

§ Similar rules apply for "hiding" variables of the
same name from an outer scope as with class
scope variables

» One more time: don't reuse variable names!

WIT COMP1000 14

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

public	class	ClassExamples	{	
	public	static	void	main(String[]	args)	{	
	 	int	i;	
	 	for	(i	=	0;	i	<	10;	i++)	{	
	 	 	int	j;	
	 	 	j	=	i	*	9;	
	 	 	System.out.println(j);	
	 	}	
	 	System.out.println(i);	
	}	

}	

Example

i	can be used anywhere
in the main() method

j	can only be used in the
for loop body

WIT COMP1000 15

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example with an Error

public	class	ClassExamples	{	
	public	static	void	main(String[]	args)	{	
	 	for	(int	i	=	0;	i	<	10;	i++)	{	
	 	 	System.out.println(i);	
	 	}	
	 	System.out.println(i);	
	}	

}	

i	can only be used in the
for loop

Error! i can't be used
outside of the for loop

WIT COMP1000 16

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Take Home Points

§ All variables and constants have a certain scope
(class, method, block)

§ Variables can only be used within the same
scope or any sub-scopes

§ Be very careful about reusing variable names

§ Class constants are useful, but class variables
should only be used in certain cases which we'll
discuss in detail later

