
 Wentworth Institute of Technology Engineering & Technology

WIT COMP1000

Testing and Debugging

WIT COMP1000 2

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Testing Programs

§ When testing your code, always test a variety
of input values

§ Never test only one or two values because
those samples may not catch some errors

§ Always test "interesting" values

» Values that show up in the code

» For example, boundary values that change if/else
behavior

WIT COMP1000 3

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

"Interesting" Values

HTTP://XKCD.COM/376/

WIT COMP1000 4

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Also: Be Nice to Your Computer

CRASH

EVERY
THING

HTTP://XKCD.COM/371/

WIT COMP1000 5

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Also Also: Be Diligent!

Computer!

HTTP://XKCD.COM/242/

WIT COMP1000 6

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

One Last Warning

HTTP://XKCD.COM/292/

WIT COMP1000 7

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example Bug: Microsoft, 12/31/2008
Early this morning we were alerted by our customers
that there was a widespread issue affecting our 2006
model Zune 30GB devices (a large number of which
are still actively being used). The technical team
jumped on the problem immediately and isolated the
issue: a bug in the internal clock driver related to the
way the device handles a leap year. That being the
case, the issue should be resolved over the next 24
hours as the time change moves to January 1, 2009.
We expect the internal clock on the Zune 30GB
devices will automatically reset tomorrow (noon,
GMT). By tomorrow you should allow the battery to
fully run out of power before the unit can restart
successfully then simply ensure that your device is
recharged, then turn it back on. If you’re a Zune Pass
subscriber, you may need to sync your device with
your PC to refresh the rights to the subscription
content you have downloaded to your device.

WIT COMP1000 8

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Zune Bug Excerpt

//	 days	 is	 the	 number	 of	 days	 since	 1980,	 e.g.,	 10000	 or	 365	 or	 10592	
//	 year	 is	 the	 current	 year	
	
	

	 if	 (IsLeapYear(year))	 {	
	 	 if	 (days	 >	 366)	 {	
	 	 	 	 	 	 days	 -‐=	 366;	
	 	 	 	 	 	 year	 +=	 1;	
	 	 }	
	 }	

366 and 367
seem like good
values to test

WIT COMP1000 9

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

General Advice

§ Always check for common errors

» Using = instead of ==	

» Using > or < instead of <= or >=	

» Other off-by-one errors

» Integer division

§ Always test your code

» Use lots of values to test, including ones that
change the behavior of the code

WIT COMP1000 10

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Localize Errors

§ When you don't get the output you expect, DO NOT
just change code randomly

§ Narrow down where the problem is by checking values
throughout the program

» Use output statements at key points to check current
variable values

» Also use output statements to verify which branch of if-
else statements are taken

WIT COMP1000 11

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Example (with Errors)
import	 java.util.Scanner;	
	 	
public	 class	 ClassExamples	 {	
	 	

	 public	 static	 void	 main(String[]	 args)	 {	
	 	 	
	 	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 	 double	 radius,	 height,	 volume;	
	 	 	
	 	 System.out.print("Enter	 the	 radius	 of	 the	 cone:	 ");	
	 	 radius	 =	 input.nextDouble();	
	 	 System.out.print("Enter	 the	 height	 of	 the	 cone:	 ");	
	 	 height	 =	 input.nextDouble();	

	 	
	 	 volume	 =	 1	 /	 3	 *	 Math.PI	 *	 radius	 *	 radius	 *	 height;	
	 	 	
	 	 System.out.println("The	 volume	 is:	 "	 +	 volume);	
	 }	

	 	
}	

	 	

WIT COMP1000 12

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

	 	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 	 double	 radius,	 height,	 volume;	
	 	 	
	 	 System.out.print("Enter	 the	 radius	 of	 the	 cone:	 ");	
	 	 radius	 =	 input.nextDouble();	
	 	 System.out.print("Enter	 the	 height	 of	 the	 cone:	 ");	
	 	 height	 =	 input.nextDouble();	

	 	
	 	 System.out.println("radius	 is	 "	 +	 radius);	
	 	 System.out.println("height	 is	 "	 +	 height);	
	 	 	
	 	 //volume	 =	 1	 /	 3	 *	 Math.PI	 *	 radius	 *	 radius	 *	 height;	
	 	 //volume	 =	 1	 /	 3	 *	 Math.PI;	
	 	 volume	 =	 1	 /	 3;	
	 	 	
	 	 System.out.println("The	 volume	 is:	 "	 +	 volume);	

Error Localized

Integer division!

WIT COMP1000 13

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Simple Testing and Debugging

§ When your code doesn't produce the correct
output, don't just randomly change things

§ Localize the error by using output statements to
track variable values, branch conditions, and
other interesting areas of your code

§ Always check for common mistakes (look very
hard, because they are easy to overlook)

WIT COMP1000 14

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Debugging Exercise
	 public	 static	 void	 main(String[]	 args)	 {	
	 	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 	 int	 answer	 =	 3;	
	 	 int	 guess;	
	 	 	
	 	 System.out.print("Enter	 a	 guess	 between	 1	 and	 10:	 ");	
	 	 guess	 =	 input.nextInt();	
	 	
	 	 if	 ((guess	 <=	 1)	 ||	 (guess	 >=	 10))	 {	
	 	 	 System.out.println("Invalid	 guess!");	
	 	 	 System.exit(0);	
	 	 }	
	 	 	
	 	 if	 (guess	 ==	 answer)	 {	
	 	 	 System.out.println("Wrong!	 Try	 again.");	
	 	 }	
	 	 else	 {	
	 	 	 System.out.println("You	 got	 it!");	
	 	 } 	 	 	
	 }	 	

WIT COMP1000 15

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Answer
	 public	 static	 void	 main(String[]	 args)	 { 	 	
	 	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 	 int	 answer	 =	 3;	
	 	 int	 guess;	
	 	 	
	 	 System.out.print("Enter	 a	 guess	 between	 1	 and	 10:	 ");	
	 	 guess	 =	 input.nextInt();	
	 	
	 	 if	 ((guess	 <	 1)	 ||	 (guess	 >	 10))	 {	 //	 used	 <=	 and	 >=	 instead	 of	 <	 and	 >	
	 	 	 System.out.println("Invalid	 guess!");	
	 	 	 System.exit(0);	
	 	 }	
	 	 	
	 	 if	 (guess	 ==	 answer)	 {	
	 	 	 System.out.println("You	 got	 it!");	 //	 swapped	 two	 output	 messages	
	 	 }	
	 	 else	 {	
	 	 	 System.out.println("Wrong!	 Try	 again.");	 	 	
	 	 } 	 	 	
	 }	

WIT COMP1000 16

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

JUnit Testing

§ Another widely used type of testing is known as unit
testing

§ The idea is to write additional code, called unit tests,
that will automatically test your program with certain
inputs to ensure that they produce the correct output

» Of course, you must verify that your unit tests are correct!

§  JUnit is a very commonly used (and open source!) unit
testing framework for Java

» The tests you've been in running in Eclipse all semester!

» Take some time to look at the test code to see that it's just
more Java

WIT COMP1000 17

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Debugging Tools

§ Debuggers help you to quickly find and identify errors
in your code

§ Allow you to:

» Step through your code one line at a time

» View current values of all variables as the program
progresses

» Set breakpoints that will stop the code at certain places in
your code

§  Should NOT be used in place of proper testing and
analysis, but rather as an assistive tool

WIT COMP1000 18

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Eclipse Debugger

§  Eclipse has a built in debugger that has all the normal
debugging functionality

§  Set breakpoints by double clicking on the left of a line of
code in the light blue vertical bar

§  Start the program with debugging (F11, the bug button,
or go to the Run menu and click Debug)

§  The program will execute like normal until you come to a
breakpoint

§ When a breakpoint is encountered, the program will stop
and Eclipse will ask you to switch to the Debug perspective
(which you should do)

WIT COMP1000 19

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Eclipse Debug Perspective
§  Once debugging, you can see the value of all variables in the

upper right window (make sure you are looking at the
Variables tab)

§  Use the Play/Resume (F8) and Step Over (F6) buttons to
navigate through the code

»  Play/Resume starts the program running again, and it will continue until
another breakpoint is encountered or the program ends

»  Step Over executes only the next line of code and then stops

§  There are two other options you'll use in the future

»  Step Into (F5) executes the next line of code, and goes into a method if
that line is a method call

»  Step Return (F7) starts the program running again, and it continues
until the current method call finishes, then stops again

WIT COMP1000 20

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Debugging Example
	 public	 static	 void	 main(String[]	 args)	 {	
	 	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 	 int	 answer	 =	 3;	
	 	 int	 guess;	
	 	 	
	 	 System.out.print("Enter	 a	 guess	 between	 1	 and	 10:	 ");	
	 	 guess	 =	 input.nextInt();	
	 	
	 	 if	 ((guess	 <=	 1)	 ||	 (guess	 >=	 10))	 {	
	 	 	 System.out.println("Invalid	 guess!");	
	 	 	 System.exit(0);	
	 	 }	
	 	 	
	 	 if	 (guess	 ==	 answer)	 {	
	 	 	 System.out.println("Wrong!	 Try	 again.");	
	 	 }	
	 	 else	 {	
	 	 	 System.out.println("You	 got	 it!");	
	 	 } 	 	 	
	 }	 	

WIT COMP1000 21

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Steps

§  Start by putting a breakpoint at the first if statement

»  Double click in the blue bar on the left of the line

»  It should add a blue dot to indicate that there is a breakpoint there now

»  You can double click on the dot to remove the breakpoint

§  Hit F11 to start debugging, and enter a value of 1 in the console

§  Eclipse will then stop automatically at the if statement

»  Make sure to switch do the Debug perspective

§  Examine the guess	 variable and see that it is 1

§  Click the Step Over (F6) button to execute the if statement

WIT COMP1000 22

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Steps
§  The program jumps into the if code block

»  This code should only be used when the guess was invalid, but 1 is a
valid guess!

»  We now know to look very hard at the if condition because it must be
wrong

»  In this case (as it often is), the problem is an off by one error cause by
using <= instead of <	

§  Fix the if statement, then stop debugging and start the
program again with debugging

§  Next, set breakpoints at the two output statements that tell the
user if their guess was correct or not

»  Examine the values of guess	 and answer	 	

»  You'll see that the wrong output is printed when they are the same!

WIT COMP1000 23

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Debugging Exercise
public	 static	 void	 main(String[]	 args)	 {	 	

	 Scanner	 input	 =	 new	 Scanner(System.in);	
	 	 	
	 double	 length,	 width,	 area;	
	 	 	
	 System.out.print("Enter	 positive	 rectangle	 length:	 ");	
	 length	 =	 input.nextDouble();	
	 System.out.print("Enter	 positive	 rectangle	 width:	 ");	
	 width	 =	 input.nextDouble();	
	 	 	
	 if	 ((length	 <	 0)	 &&	 (width	 <	 0))	 {	
	 	 System.out.println("Invalid	 measurements!");	
	 	 System.exit(0);	
	 }	
	 	 	
	 area	 =	 length	 *	 width;	

	 	
	 System.out.println("The	 area	 is:	 "	 +	 area);	
	 	 	 	 	

}	

WIT COMP1000 24

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Steps

§ Run the program and find the following bugs:

» The program does not print an error message if either
measurement is zero

» The program does not print an error message if only one
measurement is negative

§ There must be something wrong around the if	
statement

§  Set a breakpoint on the if	 statement

§ Use the Step Over button to execute one statement at
a time

WIT COMP1000 25

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Steps

§  You'll see that it skips the error message and return	
statement on several occasions when they should be executed

»  Verify this by looking at the values of length	 and width	 in the
variables section of the debugger

§  That means that the error must be in the if	 condition

§  Try running with interesting boundary conditions such as -1, 0,
and 1

»  As you test, pay attention to the conditions and change it when you
note buggy behavior

§  In particular, both conditions should be <= instead of < and it
should be || instead of &&	

WIT COMP1000 26

 Wentworth Institute of Technology Engineering & Technology

Do. Learn. Succeed.

Take Home Points

§  Testing your code is vital, and it takes time to learn how to do
it well

§  Use simple testing and debugging techniques such as adding
output statements throughout your code

»  Of course, be sure to remove them once you have fixed any problems!

§  Use debuggers, like the Eclipse debugger, to trace through
code in order to find errors

»  Set breakpoints near lines you want to check to skip ahead to those
areas of the code

