Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Indexes

Lecture 9

o)
™. Indexes

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Outline

« Context

* Functionality

* Index types

« Utility

* Tradeoffs and considerations
— Selectivity

* A reminder of syntax

MW" Indexes
19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Database Design and Implementation Process

Figure 10.1
Phases of database design and Data content, structure, Database
implementation for large databases. and constraints applications
Phase 1: Requirements Data Processing
collection requirements requirements
and analysis l l
Phase 2: Conceptual Conceptual Transaction and
database — Schema design application design
design (DBMS-independent) (DBMS-independent)
Phase 3: Choice
of DBMS
Phase 4: Data model Logical Schema Frequencies,
mapping — and view design performance
(logical design) (DBMS-depende constraints
Phase 5: Physical Internal
design Schema design
(DBMS-dependent)
* y
Phase 6: System DDL statements Saction
implementation — SDL statements and application
and tuning implementation
A 5.2 [
‘&Y Indexes
\S e

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

What is an Index?

* Persistent data structure, stored in the
database

* Primary mechanism to get improved query
performance

* Many interesting issues (see Ch. 17-18);
we will focus on usage, tradeoffs

/W Indexes
19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Functionality

An index answers certain kinds of questions
very efficiently (depends upon type)

— Equality: fieldname=value

— Range/ordering: fieldname>value

* Only index that maintains ordering
(e.g. tree-based)

Can be used for WHERE clause, as well as
JOIN and ORDER BY

™. Indexes
19 November 2014

Fall 2014

Wentworth Institute of Technology

COMP570 — Database Applications

Comparison (1)
A | 8 | c

SELECT * FROM T
WHERE ...

* No indexes (indices)
Anything = full table scan (slow)

Index on (A)

A = ‘panda’ (fast)

A > ‘dog’ (fast, if ordered)
ORDER BY A (fast, if ordered)

Index on (B)

B = 1 (fast)

B >= 5 (fast, if ordered)
ORDER BY B (fast, if ordered)

Index on (A, B)

B =1AND A = ‘cat’ (fast)

A >= ‘cat’ AND B = 3 (fast, if ordered)
A = ‘panda’ ORDER BY B (fast, if ordered)

Index on (C,A), (C,B), ... (i.e. start with C)
Anything not including C = full table scan (slow)

Y Indexes
Sy’

19 November 2014

O 00 N O Ul b W N P =

cat
dog
panda
cat
cat
panda
moose
dog
dog

© U A N W =

10

Derbinsky

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Comparison (2)

1 nn- T2 -:--:

1

2 dog
3 panda
4 cat

1 i felidae 1
3 i canidae 3
7 i bear 7
4 iv felidae 4

T1 JOIN T2 ON T1.B=T2.Y
* No indexes: slow

 |ndex on
e |ndex on
e |ndex on

o o o
‘. Indexes

T1(B): scan T2, fast search in T1
T2(Y): scan T1, fast search in T2

T1(B), T2(Y): merge sort (if ordered)

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Index Types

* Clustered vs. Non-clustered
« Covering (w.r.t. a query)

« Balanced Trees (B+-Trees)
 Hash Tables

MW" Indexes
19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Clustered vs. Non-clustered

» Clustered: affects physical order on disk
— At most one per table (for some RDBMS, PK)
— Fast when data accessed in order/reverse

* Non-clustered: induces logical ordering
— Arbitrary number per table
— Typically non-prime
— For some RDBMS, UNIQUE

o o |
I Indexes
19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Covering
* Typically indexes help D | Name

the DBMS find the row 1 Alice
of interest 2 Bob
— ID -> Name 3 Carol
— Name->ID 4 Dan

* A covering index contains all
the necessary data within the
index itself (w.r.t. to query or
queries)

— More storage vs. IO savings
— (ID, Name) or (Name, ID)

> Y
™. Indexes
Sy’

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

L L2 /713 | 4 /71 5 | 6 |7
o [o] o [o] ®© (oo |
v v ooy
d1d2 d3d4 d5d6d7

« Balanced, constant out-degree (within range)
« Values (i.e. row pointer) only at leaves
— Distinguishes from a B-tree
— Linked list at leaves, in order
* Logarithmic traversal, constant at leaf
« Typical default index for DBMS; also used in file systems, etc.

19 November 2014

Fall 2014

Wentworth Institute of Technology

keys

John Smith
Lisa Smith
Sam Doe
Sandra Dee

Ted Baker

COMP570 — Database Applications

Hash Table

000
001
002
151
153
154
253
254
255

overflow

buckets entries

X

Lisa Smith 521-8976 | e
X
X

John Smith 521-1234 | e

e e ™ x| sandra Dee | 521-9655
X
X

Sam Doe 521-5030 |e
X

« “Constant” access time (under certain
assumptions, amortized)

* No range queries

e o N
I Indexes

Derbinsky

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Utility

Pro Con

« Can make the difference + Extra space
between full table scan — Linear with # rows
and log/constant lookup e Extra time

— Creation (moderate)

— Maintenance (can offset
savings)

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Choosing the Index(es) to Create

* Table size
— Many rows = larger cost to table scan

« Data distribution (selectivity)

— Fewer distinct values = higher likelihood needing
to touch many rows, independent of index usage

* Index can lead to lots of IO/cache misses vs. sequential
scan via clustered index

* Query vs. update load

— Many updates = higher relative index
maintenance cost

-] é)
19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Selectivity

« Cardinality: # distinct values in a column
SELECT COUNT(DISTINCT col_name)
FROM table name;

* Selectivity: 100% * cardinality / # rows

— Compare for 10K rows...
» Gender (M/F)
« Country (195 + Taiwan)
 Birthday (Jan. 1 -> Dec. 31)
M’ Indexes

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

General Advice

 Use narrow indexes (i.e. few columns); these are more
efficient than compound indices

« Avoid a large number of indices on a table

* Avoid “overlapping” indices that contain shared columns
(often a single index can service multiple queries)

 Forindices that contain more than one column: given no other
constraints, place the most selective column first

* Always define one clustered index on each table (typically
equates to defining a PK)

‘B |ndexes

19 November 2014

Wentworth Institute of Technology COMP570 — Database Applications | Fall2014 | Derbinsky

Creating Indexes

CREATE [UNIQUE] INDEX index_ name
ON table name (c_namel, ..)
[OPTIONS];

Notes
* Ordering of columns is VERY important

* Options often refer to the type of index

being used (e.g. btree, hash) and other
important flags

o o |
I Indexes
19 November 2014

