
Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Indexes

Lecture 9

19 November 2014

Indexes

1

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Outline
•  Context
•  Functionality
•  Index types
•  Utility
•  Tradeoffs and considerations

– Selectivity
•  A reminder of syntax

19 November 2014

Indexes

2

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Database Design and Implementation Process

19 November 2014

Indexes

3

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

What is an Index?
•  Persistent data structure, stored in the

database
•  Primary mechanism to get improved query

performance
•  Many interesting issues (see Ch. 17-18);

we will focus on usage, tradeoffs

19 November 2014

Indexes

4

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Functionality
An index answers certain kinds of questions
very efficiently (depends upon type)

– Equality: fieldname=value
– Range/ordering: fieldname>value

•  Only index that maintains ordering
(e.g. tree-based)

Can be used for WHERE clause, as well as
JOIN and ORDER	 BY	

19 November 2014

Indexes

5

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Comparison (1)
SELECT	 *	 FROM	 T	
WHERE	 …	

•  No indexes (indices)
Anything = full table scan (slow)

•  Index on (A)
A	 =	 ‘panda’ (fast)
A	 >	 ‘dog’ (fast, if ordered)
ORDER	 BY	 A (fast, if ordered)

•  Index on (B)
B	 =	 1 (fast)
B	 >=	 5 (fast, if ordered)
ORDER	 BY	 B (fast, if ordered)

•  Index on (A, B)
B	 =	 1	 AND	 A	 =	 ‘cat’ (fast)
A	 >=	 ‘cat’	 AND	 B	 =	 3 (fast, if ordered)
A	 =	 ‘panda’	 ORDER	 BY	 B (fast, if ordered)

•  Index on (C,A), (C,B), … (i.e. start with C)
Anything not including C = full table scan (slow)

T	 A	 B	 C	

1	 cat	 1	 …	

2	 dog	 3	 …	

3	 panda	 7	 …	

4	 cat	 4	 …	

5	 cat	 5	 …	

6	 panda	 9	 …	

7	 moose	 10	 …	

8	 dog	 8	 …	

9	 dog	 10	 …	

19 November 2014

Indexes

6

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Comparison (2)

19 November 2014

Indexes

7

T1	 A	 B	 C	

1	 cat	 1	 …	

2	 dog	 3	 …	

3	 panda	 7	 …	

4	 cat	 4	 …	

T2	 X	 Y	 Z	

i	 felidae	 1	 …	

ii	 canidae	 3	 …	

iii	 bear	 7	 …	

iv	 felidae	 4	 …	

T1	 JOIN	 T2	 ON	 T1.B=T2.Y
•  No indexes: slow
•  Index on T1(B): scan T2, fast search in T1
•  Index on T2(Y): scan T1, fast search in T2
•  Index on T1(B), T2(Y): merge sort (if ordered)

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Index Types
•  Clustered vs. Non-clustered
•  Covering (w.r.t. a query)
•  Balanced Trees (B+-Trees)
•  Hash Tables

19 November 2014

Indexes

8

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Clustered vs. Non-clustered
•  Clustered: affects physical order on disk

– At most one per table (for some RDBMS, PK)
– Fast when data accessed in order/reverse

•  Non-clustered: induces logical ordering
– Arbitrary number per table
– Typically non-prime
– For some RDBMS, UNIQUE

19 November 2014

Indexes

9

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Covering
ID	 Name	

1	 Alice	

2	 Bob	

3	 Carol	

4	 Dan	

19 November 2014

Indexes

10

•  Typically indexes help
the DBMS find the row
of interest
–  ID -> Name
–  Name->ID

•  A covering index contains all
the necessary data within the
index itself (w.r.t. to query or
queries)
–  More storage vs. IO savings
–  (ID, Name) or (Name, ID)

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

B+-Trees

•  Balanced, constant out-degree (within range)
•  Values (i.e. row pointer) only at leaves

–  Distinguishes from a B-tree
–  Linked list at leaves, in order

•  Logarithmic traversal, constant at leaf
•  Typical default index for DBMS; also used in file systems, etc.

19 November 2014

Indexes

11

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Hash Table

•  “Constant” access time (under certain
assumptions, amortized)

•  No range queries

19 November 2014

Indexes

12

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Utility

•  Can make the difference
between full table scan
and log/constant lookup

•  Extra space
–  Linear with # rows

•  Extra time
–  Creation (moderate)
–  Maintenance (can offset

savings)

19 November 2014

Indexes

13

Pro Con

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Choosing the Index(es) to Create
•  Table size

– Many rows = larger cost to table scan

•  Data distribution (selectivity)
– Fewer distinct values = higher likelihood needing

to touch many rows, independent of index usage
•  Index can lead to lots of IO/cache misses vs. sequential

scan via clustered index

•  Query vs. update load
– Many updates = higher relative index

maintenance cost

19 November 2014

Indexes

14

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Selectivity
•  Cardinality: # distinct values in a column

SELECT	 COUNT(DISTINCT	 col_name)	
FROM	 table_name;	

•  Selectivity: 100% * cardinality / # rows
– Compare for 10K rows…

•  Gender (M/F)
•  Country (195 + Taiwan)
•  Birthday (Jan. 1 -> Dec. 31)

19 November 2014

Indexes

15

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

General Advice
•  Use narrow indexes (i.e. few columns); these are more

efficient than compound indices

•  Avoid a large number of indices on a table

•  Avoid “overlapping” indices that contain shared columns
(often a single index can service multiple queries)

•  For indices that contain more than one column: given no other
constraints, place the most selective column first

•  Always define one clustered index on each table (typically
equates to defining a PK)

19 November 2014

Indexes

16

Wentworth Institute of Technology COMP570 – Database Applications | Fall 2014 | Derbinsky

Creating Indexes
CREATE	 [UNIQUE]	 INDEX	 index_name	 	
ON	 table_name	 (c_name1,	 …)	 	
[OPTIONS];	

Notes
•  Ordering of columns is VERY important
•  Options often refer to the type of index

being used (e.g. btree, hash) and other
important flags

19 November 2014

Indexes

17

