Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Classes

Lecture 17

o)
. Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Outline

. Object Oriented Programming (OOP)
. Making Your Own Classes

. Member Access Level

. Objects as Function Arguments

. Calling Member Functions

. Constructors

o O1 B W IN -

s B
MY Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Review: File Streams

* Recall that ifstream and ofstream
variables are used to represent files for input
and output

* \We use the open, fail, and close functions
to work with file streams

 Functions are used on file stream variables
differently, because they are actually C++
classes

S

@
.. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

#include <iostream>

File Stream Example

#include <fstream> ofs is a variable of

using namespace std;

int main() ofs.open(string) is
used to open a file

{

type ofstream

ofstream ofs;

ofs.open("tmp.txt"); ofs.fail() is used to check
if (ofs.fail() if the file opened correctly

{
cout << "File failed to open." << endl;
return 1;
}
ofs << "Hello World" << endl;
ofs.close();
return 0; ofs.close() is used

to close the file

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

File Stream Functions

 The open, fail, and close functions are
part of the ofstream class

* When calling any of the class functions,
you have to use a variable of type
ofstream (termed an instance of the
ofstream class; also called an object)

— Generic form:
VARIABLE. FUNCTION(ARGUMENTS)

— Specific example: ofs.open("tmp.txt");

3
2 &P
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Object-Oriented Programming (OOP)

A programming paradigm based on the
concept of “objects”, which are data types
that contain data, in the form of variables,
called member variables; and code, in the
form of functions, called member functions.

Examples of OO languages: C++, C#, Java,
JavaScript, PHP, Python, Ruby, ...

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Rough Comparison with Procedural

Procedural
 Variables and functions are

independent (C, BASIC,
PASCAL, ...)

Length

Perimeter(length, width)

Area(length, width)

Object-Oriented

« When it makes sense, we

group variables and
functions together
(“encapsulation”)

Rectangle

E Perimeter()

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

OOP Terminology

Class. Like a “template,” this identifies all the member

variable(s) and function(s) that instances of this type
have.

« All rectangles have a length (double) and width
(double), as well as functions to compute area and
perimeter (each returning a double).

« Many C++ libraries include class definitions (e.g.
fstream includes ifstream and ofstream); you can
also define your own.

Object. A specific instance of a class. Another way of
saying this is a variable of type <insert class here>.

* [have two variables of type Rectangle, one named
rectA, the other rectB.

® [
oy Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example Class

class rectangle

{
public:

double length;
double width;

}s

* This defines a class named rectangle

 The public: line at the top of the class definition
Is iImportant, and we will discuss it later

 The two double lines say that the rectangle class

uses two double member variables named
length and width

1
oy Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Member Variables

« Defining a member variable in a class is NOT a variable declaration

* You can not use those variables except in the context of a variable
of the class type (an object)

* |In other words, you can think of the member variables as sub-pieces
of an object that you can only access as part of the object

« So, when you declare a variable of a class type, it automatically
declares the member variables for that object for you

« Using the member variables is just like using any other variable of
the same type

1
oy Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Using Member Variables

#include <iostream>

using namespace std; Definition of the
rectangle class

class rectangle

{

public: Declaration of a variable named
double length; r of type rectangle
double width;

b Give r’s 1length member

int main() variable a value of 10.5 and r’s

£ width member variable a value

rectangle r; of 5.25
r.length = 10.5;

r.width = 5.25;

cout << "r.length=" << r.length << endl;

cout << "r.width=" << r.width << endl;

return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Multiple Class Objects

* You can declare more than one variable of a
class type

« Each instance of a class variable has its own
member variables that are completely
separate from each other

* For example, declaring two rectangle
objects actually declares four double
variables (two length variables and two
width variables)

3

M
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science |l | Fall2014 | Derbinsky

Example
#include <iostream>

using namespace std; Declare two rectangle variables
named r and s

class rectangle

{
pUblidC: ble leneth Set the 1length and width member
ouble length; variabl
double width; ariables for r
}s

Set the 1length and width member

int main()

{

variables for s

rectangle r, s;

r.length = 10.5;

r.width = 5.25;

s.length = 1.8;

s.width = 0.3;

cout << "r has length=" << r.length << " and width=" << r.width << endl;
cout << "s has length=" << s.length << " and width=" << s.width << endl;
return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

Define a class named triangle. It should
have two member variables: base and
height. Write a main function that declares
a triangle variable and assigns values to
the member variables.

3

M
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

#include <iostream>
using namespace std;

class triangle

{

public:
double base;
double height;

}s

int main()

{
triangle my_tri;
my tri.base = 1;
my tri.height = 2;
return 0;

}

D
. Classes
Sy’

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Member Functions

* |n addition to member variables, classes can
iInclude member functions

 Member functions are like any other function,
except that you have access to the member
variables inside the function

* They are called using one object of the class,
as we saw with ifstream and ofstream

variables

3

M
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Define Member Functions

class rectangle

{
public:
void output()
{
cout << "length=" << length << " and width=" << width << endl;
}
double length;
double width;
}s5

« We've added a member function, output, that
returns nothing, takes no arguments, and prints
out length and width values of the object

* Note that 1ength and width are used directly

because they are part of the same class as the
function

B &P
i Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Using Member Functions

#include <iostream>
using namespace std;

class rectangle

{
public:
void output()
{
cout << "length=" << length << " and width=" << width << endl;
}
double length;
double width;
};
int main()
{

rectangle r, s;

r.length = 10.5;
r.width = 5.25;
s.length = 1.8;
s.width = 0.3;
r.output();
s.output();
return 0;

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Adding Another Member Function

class rectangle int main()
{ {
public: rectangle r, s;
void output() r.length = 10.5;
{ r.width = 5.25;
cout << "length=" << length s.length = 1.8;
<< " and width=" << width s.width = 0.3;
<< endl; r.output();
} s.output();
cout << "r has area=”
double area() << r.area() << endl;
{ cout << "s has area="
return length * width; << s.area() << endl;
} return 0;

double length;
double width;

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

Add two member functions to your
triangle class: output and area. output
should print the values of the member
variables. area should return the area of
your triangle. Write a main function to test it.

3

@
. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

#include <iostream> int main()
using namespace std; {
triangle tri;
class triangle tri.base = 1;
{ tri.height = 2;
public: tri.output();
void output() cout << "area="
{ << tri.area() << endl;
cout << "base=" << base return 0;
<< " and height=” }
<< height << endl;
}
double area()
{
return 0.5 * base * height;
}

double base;
double height;

Pl Classes
Sy’

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Defining Member Functions

* The previous examples of member functions are
defined directly in the class definition

* You can also break up the member function into a
declaration and a separate definition like we typically
do for regular functions

* The declaration goes in the class definition

« The function definition goes outside of the class
definition, with the class name added to the function
name

— For example, the function name for the definition of the
area function of rectangle would be rectangle: :area

3
B &P
oy Classes
19 November 2014

Wentworth Institute of Technology

COMP128 — Computer Science |

| Fall2014 | Derbinsky

Examples (both produce identical results)

#include <iostream>
using namespace std;
class world

{
public:
void hello();
}s
int main()
{
world w;
w.hello();
return O;
}
void world: :hello()
{
cout << "Hello World"™ << endl;
}

#include <iostream>
using namespace std;

class world

{
public:
void hello()
{
cout << "Hello World"
<< endl;
}
}s
int main()
{
world w;
w.hello();
return 0;
}

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Don’t Forget the Class Name

* If you forget to add the class name to a
member function definition that is outside of
the class definition, C++ will not know that it

IS for that class

* The typical result is a linker error for
unresolved symbols

* Note that you can have a member function
that has the same name as non-member
function

DI
B Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

Missing the world: : in front of the
class world

hello() name, so C++ thinks this is

{ . another function named hello
public:
void hello();
}s
int main()
{
world w;
w.hello();
return 0;
}
void hello()
{

cout << "Hello World" << endl;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Another Example

#include <iostream> void world::hello()
using namespace std; {
cout << "Hello World" << endl;

class world }
{
public: void hello()

void hello(); {
}s cout << "Hello" << endl;

}

void hello();

int main()

{
world w;
w.hello();
hello();
return O;
}

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Member Access Level

- Every member (variable or function) of a class has
a fixed access level

 There are three access levels: public, private,
and protected

* The access level determines where the variable or
function can be used

* We will only be using public and private in this
course, but you will learn about protected when
you learn about inheritance

B &P
i Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

public Members

« So far, we've only been using public
members

 These public members can be accessed
directly from anywhere in your program

* You can use member variables just like any
other variables

* You can use member functions just like any
other functions

3

@
. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

private Members

 Members that are private can only be accessed
and used inside of member functions (public or
private) of the same class

* You can use private member variables only in
member functions of the class

* You can call private member functions only from
other member functions of the class

* You can NOT use private members in non-
member functions, such as main

5

s i Classes
72
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Setting Member Access Levels

 All class members declared after an access level

keyword (public or private) but before the next
access level keyword have that access level

 |f no access level is given, the members are
private

o)
oy Classes
et

19 November 2014

class my_class

{

int i; // private variable
public:
void some_func(); // public function
double x; // public variable
private:
int fun(int c); // private function
bool b; // private variable
public:
double y; // public variable
}s

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream> void playing card::set(char s, char value)
using namespace std; {
class playing card suit = s;
{ if (value == 'j')
public: {
void set(char s, char value); rank = 11;
void print() }
{ else if (value == 'q')
cout << rank << " of " {
<< suit << endl; rank = 12;
} }
private: else if (value == 'k')
char suit; {
int rank; rank = 13;
}; }
else if (value == 'a')
int main() {
{ rank = 14;
playing card c; }
c.set('h', "’); else if (value >= '2' && value <= '9')
c.print(); {
c.suit = 'h'; // build error rank = value - '9’';
return 0; }
} }

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Why private?

* By making members private, you ensure that
they are not used outside of the class member
functions

— This is typically done for all variables

* Functions are made private if they are only used
iInternally in the class, and should not be called by
a programmer that is utilizing the class

* In other words, private members are used to
hide the implementation details of a class
(“information hiding”)

3

@
. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Objects as Function Arguments

» Class variables (objects) can be passed as
function arguments, just like any other

variable

* Inside a member function of the same class,
you have be careful to use the correct
variables (the ones for "this" object versus
the ones for the function argument)

* You access members of the argument object
like normal

a/ @
i Classes

19 November 2014

Wentworth Institute of Technology

COMP128 — Computer Science |l | Fall2014 | Derbinsky

Example

#include <iostream»
using namespace std;

class my_integer

{
public:
void set_value(int new_v)
{
X = new_v;
}
void set_value(my_integer new_v)
{
X = New_V.X;
}
int get_value()
{
return Xx;
}
private:
int x;
};
4 g: ! Classes
S 7

int main()

{

my_integer minel, mine2;

minel.set_value(15);
mine2.set_value(minel);

cout <<
<<
<<
cout <<
<<
<<

"minel.x="
minel.get_value()
endl;

"mine2.x="
mine2.get_value()
endl;

return 0;

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Calling Member Functions

* You can call member functions of a class
from other member functions of the same
class

 When doing so, you use the function directly,
just like when you use member variables

 That is, there i1s no variable name and a dot
before the name of the function, because you
are already in the context of the class

S

@
.. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream> private:
using namespace std; double to_celsius()
{
class temperature return (5.0 / 9) * (temp_f - 32);
{ }
public: double temp_f;
void set(double temp) }s
{
temp_f = temp; int main()
} {
double get(char scale) temperature t;
{ t.set(50);
double temp; cout << t.get('F') << " degs F is ”
if (scale == 'F’) << t.get('C") << " degs C" << endl;
{ return 0;
temp = temp_f; }
}
else
{
temp = to_celsius();

}

return temp;

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

Modify the set function in the temperature
class to have a second character argument
that specifies the scale ('C' or 'F'). Add
another private member function named
to_fahrenheit that converts a temperature
from celsius to fahrenheit to help you in the
new set function.

3

M
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

#include <iostream> private:
using namespace std; double to_celsius()
class temperature {
{ return (5.0 / 9) *
public: (temp_f - 32);
void set(double temp, char scale) }
{ double to_fahrenheit(double c)
if (scale == 'F') {
temp_f = temp; return (9.0 / 5) * ¢ + 32;
else }
temp_f = to_fahrenheit(temp); double temp f;
} }s
double get(char scale)
{ int main()
double temp; {
if (scale == 'F"') temperature t;
temp = temp_f; t.set(50, 'C’);
else cout << t.get('F")
temp = to_celsius(); << " degs F is ”
return temp; << t.get('C")
} << " degs C" << endl;
return 0;
}

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Now, modify the temperature class so that
the member variable stores the temperature
In celsius rather than in fahrenheit

s B
MY Classes
19 November 2014

Wentworth Institute of Technology

COMP128 — Computer Science |l | Fall2014 | Derbinsky

Answer

#include <iostream>
using namespace std;

class temperature

{
public:
void set(double temp, char scale)

{

if (scale == 'F')
temp _c = to_celsius(temp);
else
temp_c = temp;
}
double get(char scale)
{
double temp;
if (scale == 'F')
temp = to_fahrenheit();
else
temp = temp_c;
return temp;
}

19 November 2014

private:
double to_celsius(double f)
{
return (5.0 / 9) *
(f-32);
}
double to_fahrenheit()
{
return (9.0 / 5) * temp_c + 32;
}
double temp_c;
}s
int main()
{
temperature t;
t.set(50, 'C’);
cout << t.get('F")
<< " degs F is ”
<< t.get('C")
<< " degs C" << endl;
return 0;
}

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Constructors

« Constructors are special member functions that are used for
Initialization, to construct an object

* Aclass can have multiple constructors that have different
argument lists, but each object can only be initialized with one
constructor

 The function name for a constructor is the same as the name
of the class

 Constructors have no return values

« Except under very special circumstances, constructors should
always be public

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

class stock
{
public:
stock(double init value, int init_shares)
{
value = init_value;
shares = init_shares;
}
void print()
{

cout << "You have
<< shares << shares worth a total of $"
<< value * shares << endl;

}

private:
double value;
int shares;

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Calling a Constructor

« Constructors are called automatically when you
declare an object

« They can not be called after an object is declared
(at least until you learn about dynamic allocation!)

* Only one constructor can be called per object, and
one constructor is always called

* You specify the arguments in parentheses after
the variable name

— Example: stock goog(573.00, 5);

-] é)
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

class stock

{
public:
stock(double init_value, int init_shares)
¢ value = init_value; C++ automatically calls the
shares = init_shares; constructor that takes two
b . arguments (one double
‘{’°1d print() and one int)
cout << "You have " << shares
<< " shares worth a total of $”
<< value * shares << endl; int main()
} {
private: stock goog(573.00, 5);
double value; goog.print();
int shares; return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

Write a class named account which has a
single member variable to store the balance
of an account. Include a constructor that
allows you to set the initial balance of the
account. Write a main function to test it.

3

@
. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

#include <iostream>
using namespace std;

class account

{
public:
account(double initial_balance)
{
balance = initial_balance;
}
void print()
{
cout.precision(2);
cout.setf(ios::fixed);
cout << "$" << balance << endl;
}
private:
double balance;
}s
int main()
{
account checking(15.50);
checking.print();
return 0;
}
A ©. % [a
‘. Classes

Sy
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Multiple Constructors

* You can define as many constructors as you
want for each class, so long as they conform
to the normal function rules

* The argument lists have to be different,
meaning different types or different numbers
of arguments

— Overloading!

« C++ automatically chooses the correct
constructor based on the arguments provided

B "
oy Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

#include <iostream>
using namespace std;

class stock New constructor with a

{ single argument
public:

stock(double init_value)

{

value = init_value;
shares = 0;

}
ztock(double init_value, int init_shares) Calling the new constructor
value = init_value;
shares = init_shares;
}
void print()
{
cout << "You have " << shares int main{)
<< " shares worth a total of $* {
<< value * shares << endl; stock\ goog(573.00, 5);
} stock msft(27.02);
private: goog.print();
double value; msft.print();
int shares; return 0;

}s }

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Default Constructor

* One special constructor is the default constructor

* This is the constructor used when no arguments are
provided at object declaration

— Example: stock csco;

* |f you define no constructors for a class, the compiler
automatically adds a default constructor that does
nothing

 |f you define any constructors for a class (not
necessarily a default constructor), the compiler does
NOT add a blank default constructor for you

S

@
.. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream> void print()

using namespace std; {

cout << "You have " << shares
class stock Default constructor << shares worth a total of $

{ << value * shares << endl;
public: }
stock() private:
{ double value;
value = 0; int shares;
shares = 0; };
}
stock(double init_value) int main()
{ {
value = init_value; stock goog(573.00, 5);
shares = 0; stock msft(27.02);
} stock csco;
stock(double init_value, goog.print();
int init_shares) msft.pr‘:!.nt(); Calling the
{ csco.print();
value = init_value; return 0; default

shares = init_shares; } constructor

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

No Default Constructor

#include <iostream> int main()
#include <string> {
using namespace std; person op("Optimus", "Prime");
person um; // build error
class person op.name(); |
{ return 0;
public: }
person(string fn, string 1ln)
{ T~ Only constructor

first_name = fn;

last_name = 1n;
} arguments, so no

defined takes two

void name() default constructor No default constructor
{ . means you cannot
cout << "Name: " << first_name e g sErEE
<< " " << last_name << endl; P
} no arguments
private:

string first_name;
string last_name;

}s

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Automatic Default Constructor

#include <iostream>
#include <string> No constructor defined, so

using namespace std;
//— a default constructor that
class user

does nothing is

{ .
public: automatically added .
void set_id(int new_id) Default constructor is
t , called, which does
id = new_id; . S
} nothing and initializes
void set_username(string un) no member variables
{
username = un;
}
void print()
{ int main
cout << "username=" << username << endl; {
cout << "user id=" << id << endl; user u;
} u.print();
prj_vate: u.set_id(2716657);
string username; u.set_username("bender");
int id; u.print();
};3 return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

Modify your account class to include a
default constructor that sets the balance to
$0.00. Also add a function named adjust
that allows you to adjust the balance by a
positive or negative amount. Test the new

functions in main.

3

@
. Classes
19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

#include <iostream> int main()
using namespace std; {
account checking;
class account checking.adjust(1000.00);
{] checking.adjust(-125.00);
public: checking.print();
account() return 9;
{
balance = 0; }
}
account(double initial_balance)
{
balance = initial_balance;
}
void adjust(double adjustment)
{
balance = balance + adjustment;
}
void print()
{
cout.precision(2);
cout.setf(ios::fixed);
cout << "$" << balance << endl;
}
private:
double balance;
}s
LN

1
. Classes

19 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Wrap Up

« Aclass defines a complex variable type

— Contains its own variables and functions that are only for
use with objects of that class

* There are many predefined classes in C++ including
string, ifstream, and ofstream

* You can also define your own classes

— Often done to represent an entity in your program that
requires more than one variable

* This is just the beginning of object oriented (OO)
software development

B &P
i Classes

19 November 2014

