Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Testing and Debugging

Lecture 15

KA

/@ Testing and Debuggin
o g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Outline

1. Function Analysis
— Preconditions, postconditions, return values

2. Testing/Debugging Culture via XKCD
— http://xkcd.com

3. Testing Programs & Functions

4. Review of Debugging

o BN

S Testing and Debuggin
& M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Review Exercise

Write a function named swap that takes two
integer arguments and swaps their values

— After the function is done the first argument
should be what the second argument was and
vice versa

Example:

int vall = 5;

int val2 = 8;

swap(vall, val2);
// vall will be 8
// val2 will be 5

o BN

S Testing and Debuggin
& M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

void swap(int& x, int& y)

{
int temp = x;
X =Y
y = temp;

}

M’ Testing and Debuggin
vt g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Preconditions and Postconditions

* Whenever you have a function, you should
document any assumptions made by the
function and what the effects of the
function are

— Called preconditions (assumptions) and
postconditions (effects)

* This allows you to understand how to use
a function without needing to look at the
actual code for that function

-]

T ; :

i Testing and Debuggin
MJ g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

The swap function uses both x and y without
assigning any values, so x and y must both have
some value before swap is called

After swap is finished, the new value of x is the
original value of y, and the new value of y is the
original value of x

// Preconditions: x and y have been initialized with some values
// Postconditions: the values of x and y have been swapped
void swap(int& x, int& y)

{
int temp =
X =Y
y = temp;

/WM Testing and Debuggin
5 s g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Return Values

* Return values are usually listed separately
from the preconditions and postconditions

« Sometimes given as postconditions

// Preconditions: a and b are lengths of short sides of a triangle

// Postconditions: none
// Returns: the length of the hypotenuse of the triangle
double hypotenuse(double a, double b)

{
}

// Preconditions: a and b are lengths of short sides of a triangle
// Postconditions: returns the length of the hypotenuse of the triangle
double hypotenuse(double a, double b)

{

return sqrt(a*a + b*b);

return sqrt(a*a + b*b);

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Conditions

* Not all functions have preconditions or
postconditions

* Example:

// Preconditions: none
// Postconditions: val has been given a value (from the user)
void get_integer(int& val)
{
cout << "Enter an integer\n";
cin >> val;

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

What are the preconditions, postconditions,
and return values for this function?

double do_something(int& vall, int val2)

{
double result;
result = vall * val2;
vall++;
val2--;
return result;
}

" Testing and Debuggin
A M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Answer

// Preconditions: vall and val2 have been initialized

// Postconditions: vall has been incremented by one

// Returns: the original value of vall multiplied by val2
double do_something(int& vall, int val2)

{
double result;
result = vall * val2;
vall++;
val2--;
return result;
}
. VSR Gl el EE

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Testing Programs and Functions

* When testing your code, always test a
variety of input values

* Never test only one or two values because
those samples may not catch some errors

* Always test "interesting" values

— Values that show up in the code (e.qg.
boundary values that change loop or if/else
behavior)

-]

a3 N P . 1

i Testing and Debuggin
MJ g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

“Interesting” Values (1)

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH FAIL!

81

B2

/@) Testing and Debuggin
> gging

12 November 2014

(1 - b}
Interesting” Values (2)

Miﬁ normal opproach

(s useless /?ere.

KA

/@ Testing and Debuggin
o g gging

12 November 2014

Wentworth Institute of Technology

COMP128 — Computer Science |

| Fall2014 | Derbinsky

Be Nice to Your Computer

OKAY, HUMAN.

HUH? 3
BEFORE YOU

HIT (OMPILE,
“LISTEN yp

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU IMAGINE YOURSELF
WALKING OR
M SOMETHING,

AND SUCDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAI(E?

YEAH'

%%j

I Testing and Debugging

12 November 2014

Everything

WELL, THAT'S WHAT A
SEGFADET FEELS LIKE.
\

DOUBLE - CHECK YOUR
DAMN, POINTERS, OKAYY

-

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Be Diligent

ez £

NORMAL

PERSON SCIENTIST

I WONDER |F
THAT HAPPENS EVERY

T GUESS T
SHOULDNT DO THAT

M8 Testing and Debugging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

An Unrelated Warning

T COULD RESTRUCTURE | | EH, SCREW GQOD PRACTICE.
THE PROGRAMS FLOW | | HOW BAD CAN IT BE?

OR U‘SE ONE LITTLE goto main-sub3;
‘GOTO" INSTEAD. .

\
;)& f ; !H *COMPILE*

MY Testing and Debuggin
St g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example Bug: Microsoft, 12/31/08

Early this morning we were alerted by our customers
that there was a widespread issue affecting our 2006
model Zune 30GB devices (a large number of which
are still actively being used). The technical team
Jumped on the problem immediately and isolated the
issue: a bug in the internal clock driver related to the
way the device handles a leap year. That being the
case, the issue should be resolved over the next 24
hours as the time change moves to January 1, 2009.
We expect the internal clock on the Zune 30GB
devices will automatically reset tomorrow (noon,
GMT). By tomorrow you should allow the battery to
fully run out of power before the unit can restart
successfully then simply ensure that your device is
recharged, then turn it back on. If you’re a Zune Pass
subscriber, you may need to sync your device with
your PC to refresh the rights to the subscription
content you have downloaded to your device.

/WM Testing and Debuggin
5 s g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall 2014

Zune Bug

// days is the number of days since 1/1/1980, e.g., 10592
year = 1980;

while (days > 365)

{
. What happens
if (IsLeapYear(year)) on last day of
{ ?
if (days > 366) aleapicar:

{
days -= 366; EPOCH FAIL!
year += 1; Y,
}
}
else
{
days -= 365;
year += 1;
}
}
%;";j Testing and Debugging

Derbinsky

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Function Notes

* Always include comments describing all
preconditions, postconditions, and return
values for every function

— Don't necessarily have all three for every
function

* When testing your code, always test many
values, including any interesting values
that change the way the code behaves

-]

” [. .
. Testing and Debuggin
& M‘J g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Complicated Functions

* When you write a complicated function,
you need to test it in isolation

« Copy the function to a new project/file and
write a special main() function to test it

— Called a driver

* Test a variety of inputs that cover the
different possibilities in the function

-]
a3 N P . 1
i Testing and Debuggin
MJ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Testing the Code

#include <iostream>
using namespace std;

// Preconditions: days is the number of days since Jan 1, 1980
// Postconditions: year is the year computed from days, and days

// is the number of days in that year
void calc_date(int& year, int& days);

// Preconditions: year is initialized

// Postconditions: none

// Returns: true if year is a leap year, false otherwise
bool IsLeapYear(int year);

int main()

{
int y;
int d=1000; // try 10592 and 10593
calc_date(y, d);
cout << "year is " << y << " and day is " << d << endl;
return 0;

" Testing and Debuggin
5 :@‘9 g gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Common Errors

* Using = instead of ==
* Using » or < instead of <= or »>=

* Other off-by-one errors

Call by reference instead of call by value
(or vice versa)

Integer division

o BN

S Testing and Debuggin
& M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

L ocalize Errors

 When you don't get the output you expect,
DO NOT just change code randomly

I WONDER |F
THAT HAPPENS EVERY

* Narrow down where the problem ﬁ
IS by checking values throughout the program

— Use cout statements at key points to check
variable values

— Also use cout statements to verify which branch
of if/else statements are taken, and how many
iterations a loop goes through

-]

” [. .
. Testing and Debuggin
& M, g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

double cone_volume(double radius, double height);

int main()

{
cout << "cone_volume(2.0, 5.0)="
<< cone_volume(2.0, 5.0) << endl;
return O;
}
double cone_volume(double radius, double height)
{
const double PI=3.14159;
double volume = 1 / 3 * PI * padius * radius * height;
return volume;
}

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Error Localized

double cone_volume(double radius, double height)

{
const double PI=3.14159;
cout << "cone_volume: PI=" << PI << endl;
cout << "cone volume: radius=" << radius << endl;
cout << "cone_volume: height=" << height << endl;
//double volume = 1 / 3 * PI * radius * radius * height;
//double volume =1 / 3 * PI;
double volume = 1 / 3;
cout << "cone_volume: volumez" << volume << endl;
return volume;

}

Integer

division!

788 Testing and Debugging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

#include <iostream>

Example

using namespace std;
void do_choice(char choice, int vall, int val2, int answer);
int main()

{

int answer;

do_choice('*', 10, 20, answer);

cout << "main: answer=" << answer << endl;
return 0;

void do_choice(char choice, int vall, int val2, int answer)

{

if (choice = "+')
{
answer = vall + val2;
else if (choice = '-")
{
answer = vall - val2; Forgot call by
}
:159 H (chotee =) ESEEE
answer = vall * val2;
}
else
{ .
answer = vall / val2; Smgl.e equal
} sign!

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

int main()

{

double sum=0, avg=0, input;
int count=0;

cout << "Enter a set of positive numbers, and a negative number to stop." << endl;
cin >> input;
while (input >= 0)

{

sum = sum + input;

cin >> input;
}
if (count = 0)
{ Forgot count
, avg = @; increment!
else
{

avg = sum / count; inol |
} Single equa

cout << "The average 1is

<< avg << endl; sign!
return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Review of Debugging

 Debuggers help you to quickly find and
identify errors in your code

 Allow you to:
— Step through your code one line at a time

— View current values of all variables as the
program progresses

— Set breakpoints that will stop the code at certain
places in your code

« Should NOT be used instead of proper
testing/analysis, but as an assistive tool

%@ Testing and Debugging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Visual Studio Debugger (1)

« Visual Studio has a built in debugger that has all the
normal debugging functionality

« Set breakpoints by clicking on the left of a line of code
in the light gray vertical bar

« Start the program with debugging (F5, or the play
button), or go to the Debug menu and click Step Into
(F11) or Step Over (F10)

— If you use F5, the program will execute like normal until
you come to a breakpoint

— If you use F11 or F10, the program will enter execution
mode like normal, but will stop and wait for you to do

something on the first line of your main() function

-]

- [. .
i Testing and Debuggin
& M‘J g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Visual Studio (2)

« Once debugging you can see the value of all local variables in
the bottom left window (look for Autos and Locals)

— Locals is the list of all local variables in the current function

— Autos is an auto-generated list that contains local variables,
return values from functions, and other recently used variables

« Use the Play, Step Into, Step Over, and Step Out buttons to
navigate through the code

— Play starts the program running again, and it will continue until
another breakpoint is encountered

— Step Into executes the next line of code, and goes into a function
if that line is a function call

— Step Over executes the next line of code, and runs (but does not
step through) a function if that line is a function call

— Step Out starts the program running again, and it continues until
the current function returns, then stops again

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

int main()

{
double sum=0, avg=0, input;
int count=0;

cout << "Enter a set of positive numbers, and a negative number to stop." << endl;
cin >> input;
while (input >= 0)

{
sum = sum + input;
cin >> input;
}
if (count = 0)
{
avg = 0;
}
else
{
avg = sum / count;
}
cout << "The average is " << avg << endl;
return 0;
}
.o o
.. Testing and Debuggin
o) 9 gging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Steps (1)

Start by putting a breakpoint at the if statement
— Click in the gray bar on the left of the line

— It should add a red dot to indicate that there is a breakpoint
there now

— You can click on the dot to remove the breakpoint

Hit F5 to start debugging, and enter some values

It will stop automatically at the if statement

Examine the count variable and see that it is zero

Click the Step Into button to execute the if statement

o BN

S Testing and Debuggin
& M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Steps (2)

|t jumps down to the else statement, even though
count was equal to zero, so you then know to look

very hard at the if statement

— When an if/else does the "wrong" thing, it's usually
a missing = sign

* Fix the if statement, then stop debugging and
start the program over (with debugging)

 The if statement is correct now, but count is still
zero, so you have to look at all the places count

changes
— It never changes!

W7 Testing and Debugging

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Another Example

#include <iostream>
using namespace std;

int main()

{
int num_vals, i;
double next_val, sum = 0;
cout << "Enter the number of values to follow: ";
cin >> num_vals;
cout << "Now enter

<< num_vals << " values:" << endl;

for (1i=0; i<=num_vals; i++)
cin >> next_val;
sum = sum + next_val;

cout << "The average is " << sum / num_vals << endl;
return 0;

12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Steps (1)

Run the program and find the following:
— It asks for one too many numbers
— The sum is wrong

* There must be something wrong with the loop, so
put a breakpoint at the for loop

« Start with debugging and it will stop when it gets to
the for loop for the first time

» Use the Step Over button to execute one
statement at a time

o BN

S Testing and Debuggin
& M‘ g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Steps (2)

« Keep using Step Over, and you'll see that it never
executes the sum statement

— That means the sum statement is NOT in the for loop!

« So, stop debugging, then add the curly braces around
the loop body

« Start it up again, and this time you'll see the sum
update each loop iteration

* Now, count the number of times the loop executes and
you'll see it is one too many, so start the loop at one
iInstead of zero

-]

” [. .
. Testing and Debuggin
& M, g gging
12 November 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Wrap Up

* Testing your code is V|tal and it takes time to learn
how to do it weII :

* Use simple testing and debugging techniques
such as adding cout statements throughout your
code

— Of course, be sure to remove them once you have
fixed any problems!

« Use debuggers, like the Visual Studio debugger, to
trace through code in order to find errors

— Set breakpoints near lines you want to check to skip
ahead to those areas of the code

i Testing and Debugging

12 November 2014

