Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Scope

Lecture 9

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Outline

1. Scope
2. Constants

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Variable Scope

 All variables have a set scope
— Parts of the code where that variable can be used

* Variables declared in a function are local
variables for that function

— Can not be used outside of that function

* Function argument variables are treated as
local variables in that function

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

int factorial(int n); input is local to the

main function
int main() ————_——_—________________————""'___—_——__
{

int input;

cout << "Enter a number: ";
cin >> input;

cout << input << "! =
return 0;

<< factorial(input) << endl;

}

int factorial(int n)

{ .

int total = 1; total is local to ?he
while (n > 0) factorial function
{

total = total * n;

n--; g
} ’ n is local to the
return total; factorial function

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Same Variable Names

* Variables in different scopes can have the
same name (and be different types)

* They are different variables!

 Two variables with the same name but in
different scopes are not related in any way

* For now, try not to reuse variables names In
different functions to help avoid confusion

3

P
S Scope
10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

double my func(); my_num is local to the

main function
int main() —————————_________———””————————————
{

double my_num = 2.7;
double res;
cout << "In main, my_num=
res = my_func();
cout << "In main, my_num=
cout << "In main, res="

<< my_num << endl;

<< my_num << endl;
<< res << endl;

return 0;
} .
my_num is local to the
double my_func() — my_func function
{

double my_num = 5.2;
cout << "In my_func, my_num=
return my_num;

<< my_num << endl;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Global Scope

» Variables and constants can be placed in the

global scope by declaring them outside of all
functions

 Most often useful for constants that are used
in multiple functions

* Avoid using global variables when possible

— In this course, you should never use global
variables (only global constants)

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Constants

 |t's usually a good idea to name constants in your
program if they have some special meaning

« By convention, variables names with ALL
CAPITAL LETTERS are constants

« C++includes const "variables" to strictly enforce
the idea of a constant (value can not be changed
after initialization)

— Example: const int CENTS_PER_DOLLAR = 100;

— Generic form: const type NAME = value;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

const double DOLLARS_PER_EURO = 1.27;

double dollars_to_euros(double dollars);
double euros_to_dollars(double euros);

int main()

{

cout << "5 dollars is " << dollars_to_euros(5.0) << " euros" << endl;
cout << "5 euros is " << euros_to _dollars(5.0) << " dollars" << endl;

return 0;
}
double dollars_to_euros(double dollars)
{
return (dollars / DOLLARS_PER_EURO);
}
double euros_to_dollars(double euros)
{
return (euros * DOLLARS_PER_EURO);
}

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Exercise

* Write a program that calculates the area
and circumference of a circle given its
radius. Specifically:

— Use a global constant for the value of 7

(3.14159)
%)

— Write a function that calculates the area (717

— Write a function that calculates the
circumference (277)

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example

#include <iostream>
using namespace std;

const double PI = 3.14159;

double circle_area(double radius);
double circle_circumference(double radius);

int main()

{
double r;
cout << "Enter the radius: ";
cin >> r;
cout << "The area is " << circle_area(r) << "." << endl;
cout << "The circumference is " << circle_circumference(r) << "." << endl;
return 0;
}
double circle_area(double radius)
{
return (PI * radius * radius);
}
double circle_circumference(double radius)
{
return (2 * PI * radius);
}
e
‘Bl Scope
R

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Global Variable Gotcha

* If you have a global variable and a local
variable in a function with the same name,
the local variable "hides" the global one

 The two variables are declared in different
scopes, so they are completely different
variables

* The global variable will not be accessible
within the same scope as the local variable
that has the same name

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science |l | Fall2014 | Derbinsky

Example

#include <iostream>

using namespace std; my_var is global and

. should be accessible
10;

int my_var = : :
in all functions

void my_func();

int main() my_var is redeclared

£ within the main
int my_var = 5; function here, so any
my_func(); uses of my_var in main
cout << my_var <<endl\ will use the local

return 0; variable, not the global
} one

void my_func()

{ No local my_var has
cout << my_var << endl; been declared, so uses
} the global variable

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Other Scope Rules

* Any variables declared within a code block
(everything between a set of braces {}), are
local to that block

» Variables declared inside of an if-else
block, while loop, or for loop can only be
used inside of that block or loop

« Similar rules apply for "hiding" variables of
the same name from an outer scope as with
global variables

$. 3
@) &P

3. Scope
10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example (1)

#include <iostream> i can be used

using namespace std; anywhere in the
function
int main()
{
int 1; . . . j can only be used
for (i=0; i<10; i++) within the loop body
{
int j;
j = i*9;
cout << j << endl;
}
return 0;

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Example (2)

#include <iostream>
using namespace std;

int main()

{
for (int i=0; i<10; i++) ERROR! !
{ use of undeclared
}
cout << i << endl;
return 0;
}

10 October 2014

Wentworth Institute of Technology COMP128 — Computer Science | | Fall2014 | Derbinsky

Wrap Up

 All variables and constants have a certain
scope (global, local, block)

* Variables can only be used within the same
scope or any sub-scopes

* Be very careful about reusing variable names

* Global constants are useful, but global
variables should only be used in certain
cases (and not in this class!)

3

P
S Scope
10 October 2014

