
EECS 280
DISCUSSION #6

Week of February 11



OUTLINE

Administrivia

You Can Make Variables Types Too!

Look Who’s Talking!



ADMINISTRIVIA

Project 2

Grading done!

Project 3

Due March 4 @ 11:59 PM

You are done, right?



OUTLINE

Administrivia

You Can Make Variables Types Too!

Why?

Structures

Enumerations

Composability

Look Who’s Talking!



GASP!

An ugly secret of computer science: all programs can be summarized 
as the following [possibly repeating/intertwining] sequence

a) Get data

b) Manipulate data

c) Output data

Whatever you can do to most safely, efficiently, and cost-effectively get 
from (a) to (c) makes you a good programmer

Custom variable types can make data manipulation easier, faster, and 
more maintainable over time



MOTIVATION: STRUCTURES

Let’s keep track of a 
students, what do we 
need for each student?

A picture

Name (and other basic 
info)

A list of grades

Disciplinary actions



STRUCTURES: DEFINITION

Define the fields (member elements)

struct student_info
{
string name;
string phone;
char final_grade;

};



STRUCTURES: USAGE

Now that we have a definition of our new structure, we just 
declare a new variable (or many) of that type:

student_info a;

a.name = “nate”;

a.phone = “734-555-1212”;

a.final_grade = ‘B’;

student_info b = {“jenny”, “867-5309”, ‘C’};



ENUMERATION

Definition (Oxford American):

Mention (a number of things) one by one

Computer Science view (Wikipedia):

Model an attribute that has a specific number of 
options

ex: card suits



ENUM: DEFINITION

Define the possible values

enum card_suit
{
hearts,
diamonds,
clubs,
spades

};



ENUM: USAGE

Now that we have a definition of our new structure, 
we just declare a new variable of that type:

card_suit trump;

trump = hearts;

if ( trump == spades )

...



COMPOSABILITY

Custom variable types can contain other custom 
variable types

Challenge!

Develop custom variable types to represent a deck 
of playing cards



COMPOSABILITY EXAMPLE

enum card_suit 
{

hearts, diamonds, 
clubs, spades

};

enum card_value
{

two, three, four, five, six, seven, eight,
nine, ten, jack, queen, king, ace

};



COMPOSABILITY EXAMPLE

struct card_type
{

card_suit suit;
card_value value;

};

struct deck_of_cards
{

int current_card;
card_type cards[52];

};



OUTLINE

Administrivia

You Can Make Variables Types Too!

Look Who’s Talking!

Telling your program what to do

Reading, ‘riting, ‘rithmetic



DO AS I SAY!

Consider a call to the compiler:

g++ -Werror -Wall -m32 p3.cpp dice.cpp -o p3

Everything after “g++” is an argument to the compiler

That’s right - programs can take arguments just like 
functions!



WHAT DID YOU SAY?

Access program arguments via arguments to the 
“main” function:

int main(int argc, char *argv[])

argc = number of arguments

argv = c-style strings, 
representing the actual argument 
values



ARGUMENTS: EXAMPLE

g++ -Werror -Wall -m32 p3.cpp dice.cpp -o p3

argc = 8

argv[0] = “g++”

argv[1] = “-Werror”

argv[2] = “-Wall”

...

argv[7] = “p3”



STREAMS

Transfer data from one 
point to another

cin: console -> program

cout: program -> console

fstream: program <=> file



STEP 1: LIBRARIES

Input/Output Streams

#include <iostream>

cin and cout

File Streams

#include <fstream>

ifstream, ofstream



STEP 2: OPEN THE STREAM

cin and cout are “opened” automatically

Input files:
ifstream input_file;

input_file.open( “filename.ext” );

Output files:
ofstream output_file;

output_file.open( “filename.ext” );

Check for failure:
if ( my_file.fail() ) { do_something(); }



STEP 3: OPERATORS GALORE!

Many functions/operators useful for manipulating 
streams

Output

insertion: <<

Input

extraction: >>

getline

get



OP: INSERTION

The “<<“ (insertion) operator places data on an 
output stream (cout, ofstream)

Output is buffered till “flushed”

Done automatically via “endl”

Useful functions

setw (#include <iomanip>)



OP: EXTRACTION

The “>>” (extraction) operator pulls type-specific 
data from an input stream (cin, ifstream)

Ignores white-space (space, tab, new line)

Errors in data types can be detected via “fail” and 
cleared via “clear”

Buffer is reset to beginning of error



EXTRACTION EXAMPLES

Input: “3.14159 is about pi” (sans quotes)

int i, string s, char c, float f

cin >> f >> s >> c

cin >> i >> c >> s

cin >> i >> s >> c

f = 3.14159, s=”is”, c=’a’

i = 3, c=’.’, s=”14159”

i = 3, s=”.14159”, c=’i’



FUNCTION: GETLINE

Captures data from an input stream (cin, ifstream) till 
the end of the current line

stream.getline => char *

getline( stream, string ) => c++ string



FUNCTION: GET

Grabs a single character from an input stream (cin, 
ifstream)

char c = stream.get();

Does NOT ignore white space



STEP 4: CLOSE THE STREAM

cin and cout are automatically closed

File streams must be closed manually

my_file.close();



FINAL THOUGHTS
HAPPY V-DAY :)


