
EECS 280
Discussion #4

Week of January 28

Outline

Administrivia

Testing

Binary Trees

Administrivia

Assignment #2

Due Thursday @ 11:59 PM

Submission Open

Test thoroughly, we will

Assignment #3

Out late this week

Outline

Administrivia

Testing

Motivation

Process

Binary Trees

Motivating Humor

Testing

Motivating Question:

Does my program do what it’s supposed to
do?

How would you answer this question?

Testing Example

float get_slope(int x1, int y1, int x2, int y2)

// EFFECT: returns the slope of the line defined by

// points (x1, y1) and (x2, y2)

{

// rise over run!

return ((y2 - y1) / (x2 - x1));

}

Is this function correct?
What happens in the case of a vertical line? Is this correct?

What is Correctness?

Formal method: compare implementation with
specification

requires formal (read: mathematical) description of
specification and implementation

time consuming, complicated, etc.

Quis custodiet ipsos custodes?

Empirical method: testing

The Testing Process

Develop “testable” code

Function decomposition

Unit testing, drivers

Stubs

Develop “representative” tests

Apply tests, evaluate code, rinse and repeat

Function Decomposition

When faced with a complex problem, break
code into reasonably sized “chunks” that lend
themselves well to individual testing

Avoid “god” functions/classes/programs

Single purpose code!

Unit Testing, Drivers

With well decomposed code, you can write
new functions/programs whose sole purpose
is to test other functions

Unit testing: test a single function

Integration testing: test interaction
between functions

A driver provides an automated, isolated
environment for running test code

Driver Example

int main()

{

// test simple line

float result = get_slope(1, 1, 2, 2);

cout << “slope from (1,1) to (2,2) is “ << result;

cout << “ and should be 1” << endl;

// test complex line

...

}

Stubs

Stub: dummy procedure, module, or unit

Display a trace message

Display a parameter value

Return a value from a table

Return table value selected by parameter

Useful for visualizing flow, tracking bugs

Stub Example

float get_slope(int x1, int y1, int x2, int y2)

// EFFECT: returns the slope of the line defined by

// points (x1, y1) and (x2, y2)

{

// stub data

cout << “enter get_slope: (“;

cout << x1 << “, “ << y1 << “), (“;

cout << x2 << “, “ << y2 << “)” << endl;

// rise over run!

return ((y2 - y1) / (x2 - x1));

}

Exhaustive Testing

Occasionally we can exhaustively test all
possible inputs to a function:

string get_month_name(int month_number)

{

if (month_number == 1)

return “January”;

else if ...

}

Representative Tests

Primarily we need to choose a set of test
inputs to convince ourselves of the
correctness of our code, given time/
financial/computational constraints upon us

This choice may depend upon whether we
know how the specification is implemented

Black box = code unknown

White box = code known

Black Box Example

Given that we only know the specification of
get_slope, what set of tests would you run?

Positive slope

Negative slope

Horizontal line

Vertical line

White Box Example

Consider the following code, what additional
tests might you run given this knowledge:

float get_slope(int x1, int y1, int x2, int y2)

{

int y_diff = (y2 - y1);

int x_diff = (x2 - x1);

int ratio = (y_diff / x_diff);

return ratio;

}

Outline

Administrivia

Testing

Binary Trees

Terminology

Traversal

Height

Binary Trees Terminology

Tree

a graph (consisting of nodes and edges) that is
connected and acyclic

Binary Tree

a directed tree where each node has at most two
children

Leaf

a node in a tree that has no children

Binary Tree Example

Sorted Binary Trees

Binary Tree where

left subtree is a sorted binary tree and
all elements are strictly less than the
root

right subtree is a sorted binary tree and
all elements are greater than or equal to
the root

Sorted Binary Tree
Example

Binary Tree Traversal

Traversal

the process of visiting each node in a tree
structure, exactly once, in a systematic way

Types of traversal

Preorder: node, left, right

Inorder: left, node, right

Postorder: left, right, node

Preorder Traversal

6, 3, 5, 4, 11, 8, 7, 14

N, L, RN, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, RN, L, R

N, L, R

N, L, RN, L, RN, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, R

N, L, RN, L, RN, L, R

N, L, RN, L, R

N, L, R

N, L, RN, L, RN, L, R

N, L, R

N, L, R

Inorder Traversal

3, 4, 5, 6, 7, 8, 11, 14

L, N, R

Postorder Traversal

4, 5, 3, 7, 8, 14, 11, 6

L, R, N

Binary Tree Search: 7
7=6?
7<6?

7=11?
7<11?

7=8?
7<8?

7=7?
Found!

Final Thoughts

Good luck with assignment #2

Due Thursday @ 11:59 PM

Submit early, backup your code, test
thoroughly, sleep :)

Extra challenge: tree_height

See discussion notes

