EECS 280
Discussion #4

Week of January 28

Outline

@ Administrivia
@ Testing

@ Binary Trees

Administrivia

@ Assignment #2
® Due Thursday @ 11:59 PM
@ Submission Open

@ Test thoroughly, we will

@ Assignment #3

@ QOut late this week

Outline

@ Administrivia

@ Testing
@ Motivation
@ Process

@ Binary Trees

NORMAL

PERSON SCIENTIST

T GUESS T I WONDER IF
SHOULDNT DO THAT THAT HAPPENS EVERY

Motivating Humor

Testing

@ Motivating Question:

@ Does my program do what it's supposed to
do?

@ How would you answer this question?

Testing Example

float get_slope(int x1, int yl, int x2, int y2)

// EFFECT: returns the slope of the line defined by
// points (x1, yl) and (x2, y2)

{

// rise over run!

return ((E¥2 — vl) L0022 LTy

Is this function correct?
What happens in the case of a vertical line? Is this correct?

What i1s Correctness?

@ Formal method: compare implementation with
specification

@ requires formal (read: mathematical) description of
specification and implementation

@ time consuming, complicated, etc.
@ Quis custodiet ipsos custodes?

@ Empirical method: testing

The Testing Process

@ Develop "testable” code
@ Function decomposition
@ Unit testing, drivers
@ Stubs
@ Develop "representative” tests

@ Apply tests, evaluate code, rinse and repeat

Function Decomposition

@ When faced with a complex problem, break
code into reasonably sized “chunks” that lend
themselves well to individual testing

@ Avoid “god” functions/classes/programs

@ Single purpose code!

Unit Testing, Drivers

@ With well decomposed code, you can write
new functions/programs whose sole purpose
is to test other functions

@ Unit festing: test a single function

@ Integration testing: test interaction
between functions

@ A driver provides an autfomated, isolated
environment for running test code

Driver Example

int main()
{
// test simple line
float result = get_slope(1, 1, 2, 2);
cout << “slope from (1,1) to (2,2) is “ << result;

cout << “ and should be 1” << endl;

// test complex line

Stubs

@ Stub: dummy procedure, module, or unit
@ Display a trace message
@ Display a paramefter value
@ Return a value from a tfable
@ Return fable value selected by parameter

@ Useful for visualizing flow, tracking bugs

Stub Example

float get_slope(int x1, int yl, int x2, int y2)
// EFFECT: returns the slope of the line defined by
// points (x1, yl) and (x2, y2)
{
// stub data
cout << “enter get_slope: (“;
cout << xl << 4, VoS Egld< 7Y, (5

cout << x2 << “, “ << y2 << “)” << endl;

// rise over run!

return ((y2 -yl) / (x2 - x1));

Exhaustive Testing

Occasionally we can exhaustively fest all
possible inputs fo a function:

string get_month_name(int month_number)
{
if (month_number == 1)
return “January”;

else if ...

Representative Tests

@ Primarily we need to choose a set of tfest
inputs fo convince ourselves of the
correctness of our code, given time/
financial /computational constraints upon us

@ This choice may depend upon whether we
know how the specification is implemented

@ Black box = code unknown

@ White box = code known

Black Box Example

@ Given that we only know the specification of
get_slope, What set of tests would you run?

@ Positive slope
@ Negative slope
@ Horizontal line

@ Vertical line

White Box Example

Consider the following code, what additional

tests might you run given this knowledge:

float get_slope(int x1, int yl, int x2, int y2)
{

int y_diff = (y2 - yl1);

int x _diff = (x2 - x1);

int ratio = (y diff / x diff);

return ratio;

Outline

@ Administrivia

@ Testing

@ Binary Trees
@ Terminology
@ Traversal

@ Height

Binary Trees Terminology

@ Tree

@ a graph (consisting of nodes and edges) that is
connected and acyclic

@ Binary Tree

@ a directed tree where each node has at most two
children

® Leaf

® a node in a tree that has no children

Binary Tree Example

Sorted Binary Trees

@ Binary Tree where

@ left subtree is a sorted binary tree and
all elements are strictly less than the
root

@ right subtree is a sorted binary tree and
all elements are greater than or equal to
the root

Sorted Binary Tree
Example

Binary Tree Traversal

® Traversal

@ the process of visiting each node in a free
structure, exactly once, in a systematic way

@ Types of traversal
® Preorder: node, left, right
@ Inorder: left, node, right

@ Postorder: left, right, node

Preorder Traversal

N, L R

Inorder Traversal

Postorder Traversal

L, R N

Binary Tree Search:

Final Thoughts

@ Good luck with assignment #2
@ Due Thursday @ 11:59 PM

@ Submit early, backup your code, test
thoroughly, sleep :)

@ Extra challenge: tree_height

® See discussion notes

