EECS 280 - DISCUSSION #1 3

Week of April 7 I

Outline

% Administrivia
%k Project 5
** Functors

* A'Tree Grows...

% Discussion Evaluations

Admimistrivia

*k Project 5

** Due April 15, 11:59 pm

¢ Final Exam

& April 22, 10:30 - 12:30
* Sample on C'Tools

& Next Week: Optional Review

** Administrivia
& Project5

* Clarification

* Stacks & Queues
** Functors

% A Tree Grows...

% Discussion Evaluations

Outline

Clarification

penEs A s enewsant (G5)
ISt RS et (= ey ! ,

i The list owns the pointer
e address, not the data stored

delete Xx; at that address.

Stacks

sk Stacks are abstractdatatypes 1 |
based upon LIFO (lastin, first
out)

* Basic operations

% Push

%k Pop

% Peek

¢ Length

Zia
Wﬁ
= .8
T
n.at
S E
o
SO
ZE
=
b=
=
=
= =
L 3
e
Tl

=
=
-

Basic operations

Interlude

nan0? REAL
PROGRAMMERS
USE emacs

s i

HEY. REAL | [WELL, REAL
PROGRAMMERS | | PROGRAMMERS

USE vim. VSE ed.

/ |

NO, REAL
PROGRAMMERS
USE cot.

1

/

REAL PROGRAMMERS
USE A MAGNETIZED
NEEDLE AND A

STEADY HAND.
/

EXCUSE ME, BUT
REAL PROGRAMMERS
USE BUTTERFLIES.

fE 2

THEYOPEN THEIR
HANDS AND LET THE

DELICATE WINGS FLAP ONCE.

THE DISTURBANCE RIPPLES
OUTWARD, CHANGING THE FLOV
OF THE EDDY CURRENTS

IN THE UPPER ATMOSPHERE.

WHICH ACT AS LENSES THAT
DEFLECT INCOMING COSM\C

RAYS, FOCUSING THEM TO
STRIKE THE DRIVE PLATIER

THESE CAUSE MOMENTARY POCKETS

OF HIGHER-PRESSURE AIRTO FORM,

AND FLIP THE DESIRED BRIT.

NICE.
COURSE, THERES AN EMACS
COMMAND TO DO THAT.
' OH YEAH! GOOD (L'
CxT C M- buﬁerfé,

Wﬁf

DAIT, EMACS.

Outline

% Administrivia
*k Project 5
% Functors

* A'Tree Grows...

% Discussion Evaluations

Remember Function Pointers
& . . | &

int count predicate(list t 1list, bool (*fn)(int))
// EFFECTS: returns the number of elements in list

e for which fn() returns true

{ What happens if we

e need something more
AT Ll e e e S e flexible than a function
{ alone to serve our
e fr{(AP et o o (e B et S el | purposes?
counter++;
list = list_rest(list); VWVhat about saving
bi state’

return counter;

Functors

*¢ A functor, or function object, 1s an object designed to work as a
function

¢ In G++ this 1s achieved by overloading the parenthesis
operator

*& A functor provides more flexibility than a function pointer via
member variables, constructors, and other functions

Functor Example

class Predicate {
joibllof el

virtual bool operator()(int n) = 0;

class Counter : public Predicate {
o G

elblis Ealell
Counter (=) “{: connt "= 02}
geitConnEEES RGeS,

bool operator()(int n) { if (n==5) count++; return false; }

Functor Usage

bool search 1list(list t &list, Predicate &found)

{
while (!list isEmpty(list) && !found(list first(list)))
list = list rest(list);

return !list isEmpty(list);

int count predicate(list t &list)

{

Counter pred;
search list(list, pred);

return pred.getCount();

Outline

% Administrivia
*k Project 5
** Functors

% ATree Grows...

% Discussion Evaluations

