
EECS 280 - DISCUSSION #13
Week of April 7

Outline

Administrivia

Project 5

Functors

A Tree Grows...

Discussion Evaluations

Administrivia

Project 5

Due April 15, 11:59 pm

Final Exam

April 22, 10:30 - 12:30

Sample on CTools

Next Week: Optional Review

Outline
Administrivia

Project 5

Clarification

Stacks & Queues

Functors

A Tree Grows...

Discussion Evaluations

Clarification

int *x = new int(5);
list.insert(x);

*x = 7;
delete x;

The list owns the pointer
address, not the data stored

at that address.

Stacks
Stacks are abstract data types
based upon LIFO (last in, first
out)

Basic operations

Push

Pop

Peek

Length

Queues
Queues are abstract data types
based upon FIFO (first in, first
out)

Basic operations

Push

Pop

Peek

Length

Interlude

Outline

Administrivia

Project 5

Functors

A Tree Grows...

Discussion Evaluations

Remember Function Pointers
int count_predicate(list_t list, bool (*fn)(int))

// EFFECTS: returns the number of elements in list

// for which fn() returns true

{

int counter = 0;

while (!list_isEmpty(list))

{

if (fn(list_first(list)))

counter++;

list = list_rest(list);

};

return counter;

}

What happens if we
need something more
flexible than a function

alone to serve our
purposes?

What about saving
state?

Functors

A functor, or function object, is an object designed to work as a
function

In C++ this is achieved by overloading the parenthesis
operator

A functor provides more flexibility than a function pointer via
member variables, constructors, and other functions

Functor Example

class Predicate {

public:

virtual bool operator()(int n) = 0;

}

class Counter : public Predicate {

int count;

public:

Counter() { count = 0; }

getCount() { return count; }

bool operator()(int n) { if (n==5) count++; return false; }

}

Functor Usage

bool search_list(list_t &list, Predicate &found)

{

while (!list_isEmpty(list) && !found(list_first(list)))

list = list_rest(list);

return !list_isEmpty(list);

}

int count_predicate(list_t &list)

{

Counter pred;

search_list(list, pred);

return pred.getCount();

}

Outline

Administrivia

Project 5

Functors

A Tree Grows...

Discussion Evaluations

