FECS 280
Discussion #12

Week of March 31

Outline

® Administrivia
® Deep Copies

® |inked Lists

Administrivia

® Project 4
® Should be graded early next week
® No release of grading test cases
eEFio[eEEs
® Due April 15th @ 11:59 PM

® Discussion: 1T more content, then review

Outline

® Administrivia

® Deep Copies
e Shallow Copies
® Fnter Pointers...

® Resolution

® | inked Lists

Shallow Copies

® Consider instances when we “copy” structures/
objects

® Pass by value
® Assignment
® By default, values of member variables are copied

® [sn’t this what we want?

A Shallow Copy

Sl R SHC PSR
@blledbtic
LI L IO

CANNEr R O e

e

VIEVASAE UL IE
M AN i
Sl el —
elalectin. —
loitras

A Shallow Copy

Sl R SHC PSR
@blledbtic
LI L IO

CANNEr R O e

e

VIEVASAE UL IE
M AN i
Sl el —
elalectin. —
loitras

Enter Pointers...

@iE SRl ae e iR]
ioiulelbaties:
iR e S OO

e

VI2SHe Blac B2 feLs
a2 o
R P05 eIl = TSI il (£5)8) s

Enter Pointers...

@iE SRl ae e iR]
ioiulelbaties:
iR e S OO

e

VI2SHe Blac B2 feLs
a2 o
R P05 eIl = TSI il (£5)8) s

Enter Pointers...

@iE SRl ae e iR]
ioiulelbaties:
iR e S OO

X 0x05551212

5
VI2SHe Blac B2 feLs

a2 o
a.foo = new 1int(5):;

Enter Pointers...

@iE SRl ae e iR]
ioiulelbaties:
iR e S OO

X 0x05551212

5
VI2SHe Blac B2 feLs

a2 o
a.foo = new 1int(5):;

Enter Pointers...

Object “a” no longer owns
the memory address stored in

a.foo. It shares this location

with “b.”
0x05551212

What happens if b changes >

the value at b->foo?

What happens if b

deallocates b.foo
(delete b.foo)?

Resolution

In order to maintain ownership, we need to perform a deep copy

e Allocate new memory for any dynamic elements in the source
object/structure

To make sure C++ performs a deep copy, we make two [related]
changes

¢ Add a copy constructor
e Overload the assignment operator

See notes for a fully implemented example

Outline

® Administrivia

® Deep Coples

® Linked Lists
® Motivation
e AView from Memory
® [nsert at Head

e linking Students

Motivation

Motivation

® Linked lists form the basis for managing data that changes
size over time

Motivation

® Linked lists form the basis for managing data that changes
size over time

e Currently, we have a one-to-one correspondence between
variables and data

Motivation

® Linked lists form the basis for managing data that changes
size over time

e Currently, we have a one-to-one correspondence between
variables and data

® But we cannot change the number of variables in our
source code, nor can we have infinite numbers of

variables at our disposal!

Motivation

® Linked lists form the basis for managing data that changes
size over time

e Currently, we have a one-to-one correspondence between
variables and data

® But we cannot change the number of variables in our
source code, nor can we have infinite numbers of

variables at our disposal!

® Problem: how to keep track of a changing, potentially large
amount of data with a finite [hopefully small] number of

variables

Linked Lists

Linked Lists

® Problem: how to keep track of a changing, potentially large
amount of data with a finite [hopefully small] number of
variables

Linked Lists

® Problem: how to keep track of a changing, potentially large
amount of data with a finite [hopefully small] number of

variables

® Solution: use dynamic memory to store user data as well as
[meta-]information about how we connect to more

dynamic memory

Linked Lists

® Problem: how to keep track of a changing, potentially large
amount of data with a finite [hopefully small] number of
variables

Solution: use dynamic memory to store user data as well as
[meta-]information about how we connect to more
dynamic memory

A linked list is a connected set of “nodes,” where each
node contains a unit of information as well as pointers/
addresses to other nodes

A Node

S REEE oGy

LN ClakEa:

node *next;

Some Nodes

S REEE oGy
LN ClakEa:

node *next;

node #a new node;
node *b new node;
node *c new node;
el
bs>data
Caml a0 el

Some Nodes

S REEE oGy
Jnlie s ohEEEL 2 — 5- —
node *next; >

node #a new node;
node *b new node;
node *c new node;
el
bs>data
S Zllehie!

A View from Memory

address: 0

contents:

variable:

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated:

node *a new node;

node *b new node;

node *c new node;

address: 0

A View from Memory

variable:

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

allocated:

node *a
node *b

node *c

new node;
new node;
new node;

A node pointer requires

only one memory unit.
An actual node requires
two memory units.

address: 0

A View from Memory

variable:

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

allocated:

node *a
node *b

node *c

new node;
new node;
new node;

A node pointer requires

only one memory unit.
An actual node requires
two memory units.

A View from Memory

variable:

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

allocated: X X

node *a new node;

A node pointer requires

only one memory unit.
An actual node requires
two memory units.

node *b new node;
node *c new node;

AV

address: 0

contents:

variable:

address:

contents:

allocated: X

node *a
node *b

node *c

new node;
new node;
new node;

A node pointer requires

only one memory unit.
An actual node requires
two memory units.

AV

address: 0

contents:

variable:

address:

contents:

allocated: X

node *a
node *b

node *c

new node;
new node;
new node;

A node pointer requires

only one memory unit.
An actual node requires
two memory units.

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->data
b->data
c->data

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->data
b->data
c->data

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->data
b->data
c->data

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->data
b->data
c->data

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->next =
b->next

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

a->next =
b->next

A View from Memory

- TR

variable: 1 % :

address: 100 101 102 103 104 105 106 107 108 109 110 111

-~ N

allocated: X X 3 .

a->next =
b->next

Now given only a (the
address) we can get to all
the nodes!

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

But how do we know
when to stop?

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

c->next = NULL;

But how do we know
when to stop?

address:

- TR

variable: a b C

A View from Memory

address: 100 101 102 103 104 105 106 107 108 109 110 111

-~ N

allocated: X X X X X X

c->next = NULL; Since NULL Is never a
valid object address, we
use it as a flag to stop.

A View from Memory

address: 0

contents:

variable: a b C

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

// consider

a->next->next->data

A View from Memory

M ? 10?7 2 uos? 2 2 7032

variable: a b C

address: 100 101 102 103 104 105 106 107 108 109 110 111

-~ A

allocated: X X X X X X

// consider
a->next->next->data (100 + 1) + 1)
-1

Insert at Head

node *head = NULL, newbie;

newplie = new node;
newbie->data = -1;
newbie->next = head;
head = newbie;

newplie = new node;
BEEoEie e =
newblie->next = head;
head = newbie;

Insert at Head

node *head = NULL, newbie;

newbie

newpbilie-—
newbilie-

head =

Heygohae

newbilie-
newpbilie-—

head =

= new
>data
>next

Ao

= new node;
DlolEEEy =
>next = head;
newbile;

Using this form of
insertion (insert at head),
we can create a linked list
of arbitrary length with
two variables!

Insert at Head

Higen =

Insert at Head

Insert at Head

Insert at Head

Insert at Head

Insert at Head

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated:

// abbreviated as “h”
node *head = NULL;

// abbreviated as “n”
node *newbile

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated:

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

address: 0

contents:

variable: h N

el 0 0 R O A e 0 b R B 0 e [e 0 L'y) et @ < e 0 1° R B 0 i U 0

contents:

allocated: X X

newbie = new
newbie->data
newbie->next
head = newbie;

A View from Memory

contents:

variable:

address:

contents:

allocated: X

newbie = new

We have developed a
simple, repeatable set of
steps to add to our list
with only two variables...

newbie->data
newbie->next
head = newbie;

A View from Memory

contents:

variable:

address:

contents:

allocated: X

newbie = new node;

newbie->data = 7;
newbie->next = head: what about deletion...?

head = newbie;

