- BEECS 280
Discussion #11

Week of March 24




Outline

o Administrivia
o Dynamic Memory Management

e Dynamic Memory Mistakes




Administrivia

o Project 4

e Due March 25 @ 11:59 PM
e P’rojectb

e Out this week

o Due last week of classes




Outline

o Administrivia

e Dynamic Memory Management
e Motivation
o How To (new and delete)
o Dynamic Memory Illustrated

e Dynamic Memory Mistakes




Dynamic Memory - Motivation




Dynamic Memory - Motivation

o Till now we’ve been trying to predict the amount of
memory we would need to perform a task

o Think cards and squares in Monopoly




Dynamic Memory - Motivation

Till now we’ve been trying to predict the amount of
memory we would need to perform a task

o Think cards and squares in Monopoly
Problems
o Often wasteful - 5 square Monopoly board

o “Growing” data - strings, lists, trees, recursive calls




Dynamic Memory - Motivation

o Till now we’ve been trying to predict the amount of
memory we would need to perform a task

o Think cards and squares in Monopoly
e Problems
o Often wastetul - 5 square Monopoly board
o “Growing” data - strings, lists, trees, recursive calls

e Solution: get memory as we need it!




Using Dynamic Memory

e Basic Process
o Declare a structure to track your memory
o Ask for the memory (note address)
o Use the memory (indirectly via pointers)

o Give the memory back when done




1. Declare a Pointer

@ s pglc variable allocation
g o nteger;

. 21 rav allocation
i Wy o array;




<. Ask for Memory

o Requests for memory are made using the new
operator

o By default, new throws an exception on
failure

L agl- variable allocatioen
aple amy anteger = new int;

harrayveallocation
int *my array = new int[10];

// dynamic array allocation
iRl e 0
int *my dyn array = new int[z];




3. Use the Memory

o Remember to dereference the pointer as
appropriate

' =aingle variable allocatien
imr smy integer = new . int;
(*my integer) = 5;

oLt << (*my integer);

L array allocation

dpE e Eray =snew oant e
My arrayvi2l = 7;

el i Aoy E )




3. Use the Memory

o Remember to dereference the pointer as
appropriate

' =aingle variable allocatien

B ) nteger - rnew inE;

. Lhicoger) - 52 5
e (rmy Anteger);

. array allocation

e e ety onew nt [0l

e el e P e
@olter s on MY gt ray ka2 )e




3. Use the Memory

o Remember to dereference the pointer as
appropriate

' =aingle variable allocatien
imh cmy integer = new . int;
(*my integer) = 5;

Eollis <« (*my integer);

L array allocation

dpE e Eray =snew oant e
My arrayvi2]l = 7;

el i Aoy E )




4. Release the Memory

o Release of dynamically allocated memory is
achieved using the delete operator

i =inqgle variable allocation
Al Wy Integer. = new. int;
(*my integer) = 5;

Eome - (*my integer});

delete my integer;

sy al location

B Ay e rray = new rnt O
W a2 ] = T

EHoibh e O R b S S e Al |
delete [] my array;




A Technical Aside

e Static variables and dynamic variables are
stored in different parts of memory, in very
different data structures

e Static local variables are allocated on the
system stack (with their associated
functions)

o Dynamic variables are allocated from a
separate pool of memory, known as a heap




Dynamic Memory Illustrated

address: 0 g 2 3 4 6 7 8 9 10 1l

contents:

variable:

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

o For purposes of this illustration, we ignore the
organizational differences between a stack and

a heap




1. Declare a Pointer

address: 1 2 3 4 5 6 7 8

contents:

variable:

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

. Single variable allocatieon
i e v

. array allocation
i AT =




1. Declare a Pointer

address: 1 2 3 4 5 6 7 8

contents:

variable; p

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

§ . cingle variable allecatieon
* ks rselt

. array allocation
i AT =




1. Declare a Pointer

address: 1 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

. Single variable allocatieon
i e v

. array allocation

* e vl




&. Ask for Memory

address: 1 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

L =1ingle variable allocation
int *p = new int;

§ | array allocation
: int *a = new int[10];




&. Ask for Memory

address: g 2 3 4 5 6 i

contents:

variable: p d

fddress: 100 101 102 103 104 105 106 107 108 109 110 S

contents: |

allocated:

You can have 100

£/ / single wvariable
*1111: *p = new int;

:// b s llocarion
: int *a = new int[10];




&. Ask for Memory

address: g 2 3 4 5 6 i

contents:

variable: p d

fddress: 100 101 102 103 104 105 106 107 108 109 110 S

contents: |

allocated: X

You can have 100

£/ / single wvariable
*1111: *p = new int;

:// b s llocarion
: int *a = new int[10];




&. Ask for Memory

address: g 2 3 4 5 6 i

contents:

variable: p d

fddress: 100 101 102 103 104 105 106 107 108 109 110 S

contents: |

allocated: X

// single variable allog
it *p = new int; You can have
101-110

s array allocation
}1nt *a = new int[10];




&. Ask for Memory

address: g 2 3 4 5 6 7 8

contents:

variable: p d

addresss 100 101 102 103 104 105 106 107 108 109 & L0 .

contents: |

allocated: X X X X X X X X X X X

B - ngle variable allog
. int *p = new int; You can have

101-110

%// ahBa v lElocarion
@>int *a = new int[10];




3. Use the Memory

address: 1 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated: X X X X X X X X X X X

// single variable allocation




3. Use the Memory

address: 1 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated: X X X X X X X X X X X

// single variable allocation




3. Use the Memory

address: 1 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated: X X X X X X X X X X X

// single variable allocation




4. Release the Memory

address: 0 g 2 3 4 5 6 7 8 9 10 1l

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

SlGEnted e s X X X o X X e X X e X
// single variable allocation

aéiete P’

// array allocation

&éiete L) a:




4. Release the Memory

address: 0 g 2 3 4 5 6 7 8

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated: X X X X X X X X X X

// single variable allocation

* delete P

// array allocation

delete L) a:




4. Release the Memory

address: 0 g 2 3 4 5 6 7 8 9 10 1l

contents:

variable: p d

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:

// single variable allocation

aéiete P’

// array allocation

* delete []1 a;




4. Release the Memory

address: 0 1 23 A4 570D 6 7 8 9 10

contents:

variable: p d

Adipeos ol 00 0101 102 103 104 - 105106 107108 - LOSE N

contents:

allocated:

NOTE: The pointers retain their value AND the
formerly allocated space retains its
contents. However, you are no longer
guaranteed ownership over the space in

the heap.




Outline

o Administrivia
o Dynamic Memory Management
o Dynamic Memory Mistakes

o Mistakes

o Consequences




Dereferencing NULL

e 0 or NULL is a special address: it does not
correspond to valid memory

o Dereferencing NULL always causes a
segmentation fault




Dereferencing NULL

e 0 or NULL is a special address: it does not
correspond to valid memory

o Dereferencing NULL always causes a
segmentation fault




Fa,lhng to Allocate Memory

address: 0 2 3 4 5 6 7 8 9

contents:

variable; p

address: 100 101 102 103 104 105 106 107 108 109 11 (= S

contents:

allocated:




Fa,lhng to Allocate Memory

address:

contents:

variable:

address:

contents:

allocated:

100101 102 103 104 105 106 107 108 =100 il

FEEERERE - -




Deallocating Static Memory

address: 0 1 2 %) 4 5 6 7 8 9 10 il

contents:

variable:; y p

gadresss 100 101 102 103 104 105 106 107 108 100 1 (Sl

contents:

allocated: X

Vi
= al=ie ke

delete vy;




Deallocating Static Memory

address:

contents:
variable:

fddresst 100 101 102 103 104 105 106 107 108 109 110 S

aHacated: X

ALy = 5;
HLIE e e
Elioh i i
delete vy;




Releasing Deallocated Memory

address: 0 1 2 %) 4 5 6 7 8 9 10 il

contents:

variable: p

gadresss 100 101 102 103 104 105 106 107 108 100 1 (Sl

contents:

allocated:

g e Ee new 1nt;

(*P)

S5
delete p;
delete p;




Releasing Deallocated Memory

address:

contents: |

variable:

fdeiress: 100 101 102 103 104 105 106 107 108 109 4

s L L

allocated:

ity — Hew o 1nt;

’

delete p;
delete p;




Releasing an Array with delete

address: 0 1 2 %) 4 5 6 i 8 9 10 il

contents:

variable: d

gadresss 100 101 102 103 104 105 106 107 108 100 1 (Sl

contents:

allocated: X X




Releasing an Array with delete

address: 0 i R R 7 8 9 10 g

contents:

variable:

address; 100 101 102 103 104 105 106 107 108 109 110 S

contents:

aHacated: X X

e — new  1ntf[2];
(=&

all] =

delete




Allocating Space Unnecessarily

address: 0 1 2 %) 4 5 6 i 8 9 10 il

contents:

variable: p

gadresss 100 101 102 103 104 105 106 107 108 100 1 (Sl

contents:

allocated: X




Allocating Space Unnecessarily

address: 0 1 2 3 4 5 6 7 8 9. 10 =

contents:

variable: p

Qddress: 100 101 102 103 104 105 106 107 108 105 110 .

contents: |

allocated: X

Memory Leak!




Allocating Space Unnecessarily

address: 0 i R R 7 8 9 10 g

contents:

variable:

address; 100 101 102 103 104 105 106 107 108 109 110 S

contents:

aHacated: X

i e 1o Nt
el = el
D= hew int;




Consequences

o Usually a dynamic memory bug will result in

the follow symptoms
o Values changing mysteriously

o Segmentation faults

OKAY, HUMAN. YOU KNOW WHEN YOURE | AND SUCDENLY YOO | WELL, THATS WHAT A
HoH? FALLING ASLEER AND | MISSTER, STUMBLE, | SEGFAULT FEELS UIKE.
1UR: YOU IMAGINE YOURSELF | AND JOLT AWAKE? )
BERORE You WALKING OR YEAH! DOUBLE - CHECK YOUR
HIT COMPILE, A SOVETHING, - ;f DAMN POINTERS, OKAY?

1 %h |64




Final Thoughts

o We have discussed the idea of dynamic memory
today

o We addressed the issue of allocating exactly as
much memory as needed (dynamic array)

o How would you use dynamic memory
allocation to accommodate a “growing” data
structure?

o Lastly: support your GSI’s :)




