
CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Password Security

Nate Derbinsky

April 28, 2018

Password Security

1

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

My Path to CCIS @ Northeastern
1998-2009 BitX Solutions, Inc. Founder & President

• {.gov .edu .org .com} x {desktop web mobile}

2002-2006 NC State. BS Computer Science
• TA, DBMS

2006-2012 U of Michigan. MS/PhD Comp Sci and Eng
• TA, AI+DBMS

2012-2014 Disney Research. Postdoctoral Associate
• Machine Learning, Optimization, Robotics

2014-2017 Wentworth. Assistant Professor
• 3-3, Research/Service Learning

April 28, 2018

Password Security

2

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Cognitive Systems

AI Applications/Education

Research Interests
Scalable Optimization

Online ML

April 28, 2018

Password Security

3

0"

50"

100"

150"

200"

250"

300"

350"

400"

450"

0" 1000" 2000" 3000" 4000" 5000" 6000" 7000" 8000" 9000" 10000"

A
vg
."I
te
ra
5
o
n
"T
im

e
""

(m
s/
it
e
ra
5
o
n
)"

Number"of"Circles"

TWA:"1"Core"

TWA:"2"Cores"

TWA:"4"Cores"

TWA:"8"Cores"

+Knowledge:"1"Core"

+Knowledge:"1"Core,"World"Record"Density"

+Knowledge:"8"Cores,"World"Record"Density"

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Teaching

• CS1/2
– OOP, Foundations

• Databases, Web

• AI, Machine Learning

• HTMAA
– RPi, Arduino

April 28, 2018

Password Security

4

K-12/ICT-D UG/Grad

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Core Security Concerns
• Confidentiality
– Information protection from unauthorized access

or disclosure

• Integrity
– Information protection from unauthorized

modification or destruction

• Availability
– System protection from unauthorized disruption

April 28, 2018

Password Security

5

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Authorization vs Authentication
• Authentication: who are you
– Our focus

• Authorization: what can you do

April 28, 2018

Password Security

6

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XKCD: Authorization

April 28, 2018

Password Security

7

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Methods of Authentication
• Link to another account (i.e. something

you have access to)
– Oauth (e.g. Google, Facebook, GitHub)
– Phone/e-mail

• Password (i.e. something you know)
– Cryptographic key = stronger

• Biometrics (i.e. something you are)

April 28, 2018

Password Security

8

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XKCD: Password Strength

April 28, 2018

Password Security

9

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Random Passwords

April 28, 2018

Password Security

10

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Reasonable Guidelines
• Your password must be at least 10

characters.
• You’ll never need to change it unless the

password DB leaks.
• Your password can’t contain a common

password, like “p4ssW0rd”.

• NIST password guidelines:
https://pages.nist.gov/800-63-3/sp800-
63b.html

April 28, 2018

Password Security

11

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Public Service Announcement
• Check: ';--have i been pwned?

<https://haveibeenpwned.com>
– User/e-mail
– Services
– Common passwords

April 28, 2018

Password Security

12

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XKCD: Security Question

April 28, 2018

Password Security

13

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Types of Attacks: Online
• Keep attempting
– 4 character = 5 minutes
– 6 character = 2 days
– 8 character = 3 years

• Solution: rate limit

April 28, 2018

Password Security

14

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Types of Attack: Offline
• Assume we have a system storing

usernames and passwords
• The attacker has access to the password

database/file

April 28, 2018

Password Security

15

User Password
cbw p4ssW0rd
sandi puppies
amislove 3spr3ss0

User Password
cbw p4ssW0rd
sandi puppies
amislove 3spr3ss0

Cracked Passwords

Database

I wanna login to
those user
accounts!

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Checking Passwords
• System must validate passwords provided

by users
• Thus, passwords must be stored

somewhere
• Basic storage: plain text

April 28, 2018

Password Security

16

cbw p4ssw0rd
sandi i heart doggies
amislove 93Gd9#jv*0x3N
bob security

password.txt

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Problem: Password File Theft
• Attackers often compromise systems
• They may be able to steal the password file
– Linux: /etc/shadow
– Windows: c:\windows\system32\config\sam

• If the passwords are plain text, what
happens?
– The attacker can now log-in as any user,

including root/administrator
– The attacker can/will use them elsewhere >:(

• Passwords should never be stored in plain
text

April 28, 2018

Password Security

17

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Hashed Passwords
• Key idea: store encrypted versions of passwords

– Use one-way cryptographic hash functions
– Examples: MD5, SHA1, SHA256, SHA512, bcrypt, PBKDF2,

scrypt

• Cryptographic hash function transform input data into
scrambled output data
– Deterministic: hash(A) = hash(A)
– High entropy:

• MD5(‘security’) = e91e6348157868de9dd8b25c81aebfb9
• MD5(‘security1’) = 8632c375e9eba096df51844a5a43ae93
• MD5(‘Security’) = 2fae32629d4ef4fc6341f1751b405e45

– Collision resistant
• Locating A’ such that hash(A) = hash(A’) takes a long time (hopefully)
• Example: 221 tries for md5

April 28, 2018

Password Security

18

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Hashed Password Example

April 28, 2018

Password Security

19

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

User: cbw

MD5(‘p4ssw0rd’) =
2a9d119df47ff993b662a8ef36f9ea20

MD5(‘2a9d119df47ff993b662a8ef36f9ea20’)
= b35596ed3f0d5134739292faa04f7ca3

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Attacking Password Hashes
• Recall: cryptographic hashes are collision resistant

– Locating A’ such that hash(A) = hash(A’) takes a long time
(hopefully)

• Are hashed password secure from cracking?
– No!

• Problem: users choose poor passwords
– Most common passwords: 123456, password
– Username: cbw, Password: cbw

• Weak passwords enable dictionary attacks

April 28, 2018

Password Security

20

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Remember: Passwords Are Not Random

April 28, 2018

Password Security

21

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Dictionary Attacks

• Common for 60-70% of hashed
passwords to be cracked in <24 hours

April 28, 2018

Password Security

22

English
Dictionary

Common
Passwords

hash()

hash()

List of
possible

password
hashes

hashed_
password.txt

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Hardening Password Hashes
• Key problem: cryptographic hashes are

deterministic
– hash(‘p4ssw0rd’) = hash(‘p4ssw0rd’)
– This enables attackers to build lists of hashes

• Solution: make each password hash unique
– Add a salt to each password before hashing
– hash(salt + password) = password hash
– Each user has a unique, random salt
– Salts can be stores in plain text

April 28, 2018

Password Security

23

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Example Salted Hashes

April 28, 2018

Password Security

24

cbw a8 af19c842f0c781ad726de7aba439b033
sandi 0X 67710c2c2797441efb8501f063d42fb6
amislove hz 9d03e1f28d39ab373c59c7bb338d0095
bob K@ 479a6d9e59707af4bb2c618fed89c245

hashed_and_salted_password.txt

cbw 2a9d119df47ff993b662a8ef36f9ea20
sandi 23eb06699da16a3ee5003e5f4636e79f
amislove 98bd0ebb3c3ec3fbe21269a8d840127c
bob e91e6348157868de9dd8b25c81aebfb9

hashed_password.txt

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Attacking Salted Passwords

April 28, 2018

Password Security

25

hash()
List of

possible
password

hashes

hashed_
and_salted_
password.txt

No matches

hash(‘a8’ + word)

List of
possible

password
hashes w/

salt a8

List of
possible

password
hashes w/

salt 0X

cbw a8
sandi 0X

hash(‘0X’ + word)
cbw XXXX

sandi YYYY

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Breaking Hashed Passwords
• Stored passwords should always be salted
– Forces the attacker to brute-force each

password individually

• Problem: it is now possible to compute
hashes very quickly
– GPU computing: hundreds of small CPU cores
– nVidia GeForce GTX Titan Z: 5,760 cores
– GPUs can be rented from the cloud very cheaply

• 2x GPUs for $0.65 per hour (2014 prices)

April 28, 2018

Password Security

26

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Examples of Hashing Speed
• A modern x86 server can hash all possible 6

character long passwords in 3.5 hours
– Upper and lowercase letters, numbers, symbols
– (26+26+10+32)6 = 690 billion combinations

• A modern GPU can do the same thing in 16
minutes

• Most users use (slightly permuted) dictionary
words, no symbols
– Predictability makes cracking much faster
– Lowercase + numbers à (26+10)6 = 2B

combinations

April 28, 2018

Password Security

27

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Hardening Salted Passwords
• Problem: typical hashing algorithms are too fast

– Enables GPUs to brute-force passwords

• Old solution: hash the password multiple times
– Known as key stretching
– Example: crypt used 25 rounds of DES

• New solution: use hash functions that are designed to
be slow
– Examples: bcrypt, PBKDF2, scrypt
– These algorithms include a work factor that increases the

time complexity of the calculation
– scrypt also requires a large amount of memory to

compute, further complicating brute-force attacks

April 28, 2018

Password Security

28

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

bcrypt Example
• Python example; install the bcrypt

package

April 28, 2018

Password Security

29

[cbw@ativ9 ~] python
>>> import bcrypt
>>> password = “my super secret password”
>>> fast_hashed = bcrypt.hashpw(password, bcrypt.gensalt(0))
>>> slow_hashed = bcrypt.hashpw(password, bcrypt.gensalt(12))
>>> pw_from_user = raw_input(“Enter your password:”)
>>> if bcrypt.hashpw(pw_from_user, slow_hashed) == slow_hashed:
… print “It matches! You may enter the system”
… else:
… print “No match. You may not proceed”

Work factor

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XCKD: Security

April 28, 2018

Password Security

30

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Dealing With Breaches
• Suppose you build an extremely secure password

storage system
– All passwords are salted and hashed by a high-work

factor function

• It is still possible for a dedicated attacker to steal
and crack passwords
– Given enough time and money, anything is possible
– E.g. The NSA

• Question: is there a principled way to detect
password breaches?

April 28, 2018

Password Security

31

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Honeywords
• Key idea: store multiple salted/hashed passwords for each user

– As usual, users create a single password and use it to login
– User is unaware that additional honeywords are stored with their account

• Implement a honeyserver that stores the index of the correct password for
each user
– Honeyserver is logically and physically separate from the password database
– Silently checks that users are logging in with true passwords, not honeywords

• What happens after a data breach?
– Attacker dumps the user/password database…
– But the attacker doesn’t know which passwords are honeywords
– Attacker cracks all passwords and uses them to login to accounts
– If the attacker logs-in with a honeyword, the honeyserver raises an alert!

April 28, 2018

Password Security

32

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Honeywords Example

April 28, 2018

Password Security

33

User Salt 1 H(PW 1) Salt 2 H(PW 2) Salt 3 H(PW 3)
cbw aB y4DvF7 fI bHDJ8l 52 Puu2s7

sandi 0x plDS4F K2 R/p3Y8 8W S8x4Gk

amislove 9j 0F3g5H /s 03d5jW cV 1sRbJ5

User Index
cbw 2

sandi 3

amislove 1

Database Honeyserver

SHA512(“fI” | “p4ssW0rd”) à bHDJ8l

cbw

User PW 1 PW 2 PW 3
cbw 123456 p4ssW0rd Turtles!

sandi puppies iloveyou blizzard

amislove coff33 3spr3ss0 qwerty

!

Cracked Passwords

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Password Storage Summary
• Never store passwords in plain text
– Always salt and hash passwords before storing

them
• Use modern hash functions with a high work

factor (e.g. avoid md5)
• Implement honeywords to detect breaches

• These rules apply to any system that needs
to authenticate users
– Operating systems, websites, etc.

April 28, 2018

Password Security

34

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Elixir
• See the course website :)

April 28, 2018

Password Security

35

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

WebApp Security

Nate Derbinsky

April 28, 2018

WebApp Security

1

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

WebApp: Big Picture

April 28, 2018

WebApp Security

2

Client ServerNetwork

Request (HTTP)

Response (HTTP)

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Client
• Any software capable of issuing HTTP

requests (and processing responses)
–Most common: web browser

• “Apps” commonly issue HTTP requests
on your behalf as a standardized
communication layer

April 28, 2018

WebApp Security

3

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Server
• Any software listening for HTTP requests

on one/more ports (and responds)

• Commonly a buffer layer in a 3 (or more)
tier architecture

April 28, 2018

WebApp Security

4

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Security Context
• WebApp = public API

– For the most part, anyone anywhere can try (anonymously)
whatever they want

– Your job to allow only authorized actions
• Security flaws in your project’s application logic will be a grading metric

• Useful model to keep in mind: all users are either evil
masterminds or inexperienced users banging on their
keyboards/screens
– Similar consequences (i.e. loss of confidentiality, integrity,

and/or availability)
– Possibly different methods
– Key lesson: never trust user input

• NIST Guidelines: https://pages.nist.gov/800-63-3/

April 28, 2018

WebApp Security

5

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Key Issues
• Passwords

– Covered last time

• Maintaining HTTP state

• Secure transit
– HTTPS

• Attacks
– Poor API design
– XSRF
– XSS
– Injection

April 28, 2018

WebApp Security

6

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Note: Internal App Security
All other issues aside, your app is responsible for
enforcing its authorization rules, such as…

– Only a user can edit their own posts
– Only a user can view their private messages
– Only an administrator can set another user to be an

administrator

So…
• Always make sure the user has to prove who they are

– Authentication
• Always check that they are allowed to perform an

action before executing it
– Don’t on security via obscurity (i.e. allowed to do

something because they figured out how to do it)

April 28, 2018

WebApp Security

7

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Hypertext Transfer Protocol (HTTP)
• Application protocol for distributed, client-

server communication

• Session
– Request (port, method, headers, message)
– Response (status, headers, message)

• Stateless
– SO: cookies, server sessions, hidden form data

April 28, 2018

WebApp Security

8

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Example

GET /index.html HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Date: Mon, 23 May 2005 22:38:34 GMT
Content-Type: text/html; charset=UTF-8
Content-Encoding: UTF-8
Content-Length: 138
Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT
Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)
ETag: "3f80f-1b6-3e1cb03b”
Accept-Ranges: bytes
Connection: close

<html>
<head>
<title>An Example Page</title>

</head>
<body>
Hello World!

</body>
</html>

April 28, 2018

WebApp Security

9

Request: www.example.com Response

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

HTTP Request
• TCP port

– Usually 80 (http), 443 (https)

• URL
http(s)://user:pass@domain:port/path?query#anchor

• Method: intended effect
– GET: “safe” representation (in URL)
– POST: add
– PUT: replace/add
– DELETE: delete
– OPTIONS: get
…

• Headers: operational parameters

April 28, 2018

WebApp Security

10

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

HTTP Response
• Status code, common…
– 200=ok, 404=not found, 403=forbidden,

500=server error

• Headers: operational parameters

• Message body
– Document (HTML, XML, JSON), image, …

April 28, 2018

WebApp Security

11

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Maintaining State: Cookies

GET /index.html HTTP/1.1
Host: www.example.org
…

GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: theme=light;
sessionToken=abc123
…

HTTP/1.0 200 OK

Content-type: text/html

Set-Cookie: theme=light

Set-Cookie: sessionToken=abc123;
Expires=Wed, 09 Jun 2021 10:18:14 GMT

…

April 28, 2018

WebApp Security

12

Client Server

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Maintaining State: Server Sessions
• Basic idea: server provides client a

“token” that uniquely identifies the locally
stored session data

• Language support
– e.g. PHPSESSID

April 28, 2018

WebApp Security

13

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Maintaining State: Form Data
• Basic idea: forms have hidden fields with

any necessary information to maintain
client-server synchronization

April 28, 2018

WebApp Security

14

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Secure Sessions
Irrespective of method…

• Invalidate on logout

• Should have timeout (invalidation via time)
– Appropriate timing depends on the app
– Might differ on public vs private computer,

consider asking the user (and defaulting to
public)

• More on attack vectors later

April 28, 2018

WebApp Security

15

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Secure Transit
• HTTPS is a secure variant of HTTP, running

the connection through the TLS protocol
– Note: HTTPS is commonly called “SSL” – this is

an old protocol, known to be weak, so avoid

• TLS does two things
– Encrypts the data in transit

• Otherwise: anyone on the network can intercept
– Authenticates one or both ends of the

connection
• Otherwise: Man-in-the-Middle (MITM) attacks

April 28, 2018

WebApp Security

16

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

HTTPS Certificates
• Server has a cryptographic certificate

identifying it, issued by a trusted party
called a Certificate Authority (CA)
– Example: Symantec vouches for Amazon

• CAs are validated by certificates included
with your web browser/OS
– Example: Firefox vouches for Symantec

April 28, 2018

WebApp Security

17

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

HTTPS on Your Site (1)
• You can make your own certificates,

termed self-signed, but since no one
vouches for you, browser/OS errors ensue

• CAs charge varying amounts
– Options: EV, key length, wildcard
– Cost: $0-$2000/year per site/org
• Let’s Encrypt (free): https://certbot.eff.org

April 28, 2018

WebApp Security

18

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

HTTPS on Your Site (2)
• You can configure your server to not serve HTTP

(:80)/redirect to HTTPS (:443)

• Strict-Transport-Security
– https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Strict-Transport-Security
– Let’s servers request that the browser only request HTTPS

on that site for some amount of time
• Hard to recover, so not advised for class projects

• Certificate Pinning
– Possible to tell browsers not to accept new certificates for

a site
– Similar to, but stronger than, STS – easier to mess up

April 28, 2018

WebApp Security

19

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Types of Attacks

April 28, 2018

WebApp Security

20

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Reminder
• Never trust user input
– Always filter input/output
– Client-Side is nice for UI/UX, but need server

side (requests can be sent independent of
client-side interface)

• The proceeding attacks are all common
ways in which failure to sanitize data leads
to security breach

April 28, 2018

WebApp Security

21

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

What Could Go Wrong?
<form action="/download"

method="post">
<select name="file">

<option>foo.txt</option>
<option>bar.jpg</option>

</select>
<input type="submit" />

</form>

April 28, 2018

WebApp Security

22

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Too Broad an API
• How to validate?
–What if someone sends a request with

file=“../foo.txt” or file=“/etc/stuff.conf”

• Better
– Indirection: file=7
• Validate a known range of non-path values

– Sanitize
• Don’t allow the user to escape the directory
• Hard to do perfectly, easy to get this wrong

April 28, 2018

WebApp Security

23

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Cross-Site Request Forgery (XSRF)
Basic idea…
– Assume a user is “logged into” a target site
• So user’s browser has a cookie with a login token

– On a different site, user is tricked into
submitting a request to the target site

– Target site processes the request, since user
was previously authenticated

April 28, 2018

WebApp Security

24

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSRF: Example 1

April 28, 2018

WebApp Security

25

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Client Side Server Side
GET /login_form.html HTTP/1.1

HTTP/1.1 200 OK

POST /login.php HTTP/1.1

HTTP/1.1 302 Found
Set-Cookie: session=3#4fH8d%dA1; HttpOnly; Secure;

GET /money_xfer.html HTTP/1.1
Cookie: session=3#4fH8d%dA1;

HTTP/1.1 200 OK

POST /xfer.php HTTP/1.1
Cookie: session=3#4fH8d%dA1;

HTTP/1.1 302 Found

1) GET the login
page

2) POST username
and password,
receive a session
cookie

3) GET the money
transfer page

4) POST the money
transfer request

XSRF: Session

26April 28, 2018

WebApp Security

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Origin: www.bofw.com
session=3#4fH8d%dA1

evil.com

bofw.com

Bank of
Washington

<form action="https://bofw.com/xfer.php">
<input type="hidden" name="to“
value="attacker">
<input type="hidden" name="amount“
value="1000000">

</form>
<script>document.forms[0].submit();</script>

1) Send malicious link
2) GET

3) HTTP/1.1 200 OK

4) POST, session=3#...

5) HTTP/1.1 302 Found

XSRF: Attack

27April 28, 2018

WebApp Security

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSRF: Example 2 (Home Router)
<div style="display: none;">

<form id="hax"
action="http://192.168.1.1/change_pw"
method="post">

<input type="hidden"
name="new_pw"
value="haxxor.fi" />

</form>
</div>

<script>
$(function() { $('#hax').submit() });

</script>

April 28, 2018

WebApp Security

28

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSRF: Example 2 (cont’d)
<div style="display: none;">

<form id="hax"
action="http://192.168.1.1/allow_remote"
method="post">

<input type="hidden"
name="allow_remote_access"
value="1" />

</form>
</div>

<script>
$(function() { $('#hax').submit() });

</script>

April 28, 2018

WebApp Security

29

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Best-Effort XSRF Prevention
• Include a unique token (nonce) in each

form and then verify that each form
submission has a valid token

• Can also look to referrer information, but
this is easy to get wrong

April 28, 2018

WebApp Security

30

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Cross-Site Scripting (XSS)
Basic idea…
– (Using one of several methods) embed evil

code into a site a user trusts
– The code acts as the user (i.e. via stored

credentials/data) to steal data, perform
actions, …

Common types…
– Reflected (code comes from URL)
– Stored (code comes from backend data)

April 28, 2018

WebApp Security

31

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSS Example: Reflection Opportunity
Assume a search site…

http://www.websearch.com/search?q=Christo+Wilson

April 28, 2018

WebApp Security

32

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSS Example: Reflected Attack
http://www.websearch.com/search?q=<script>document.write('');</script>

April 28, 2018

WebApp Security

33

Origin: www.websearch.com session=xI4f-Qs02fd evil.com

websearch.com

4) GET /?session=…

1) Send malicious
link to the victim

2) GET search?q=<script>…

3) HTTP/1.1 200 OK

http://www.websearch.com/

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSS Example: Stored Opportunity

April 28, 2018

WebApp Security

34

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSS Example: Stored Opportunity

April 28, 2018

WebApp Security

35

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XSS Example: Stored Attack
<script>

document.write('');
</script>

April 28, 2018

WebApp Security

36

Origin: www.friendly.com session=xI4f-Qs02fd

evil.com

friendly.com

5) GET /?session=…

3) GET

/profile.php?uid=…

4) HTTP/1.1 200 OK

2) Send link to attacker’s
profile to the victim

1) Post malicious JS to

profile

http://www.friendly.com/

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Best-Effort XSS Prevention
• Validate all input
• Filter all output

April 28, 2018

WebApp Security

37

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Injection Attacks
Basic idea…
– Backend is interacting via a declarative

language (e.g. SQL) and incorporating user
input

– Attacker escapes limited context of the
command, and can now violate
confidentiality, integrity, and/or availability
• Steal data
• Change data
• Keep the backend busy

April 28, 2018

WebApp Security

38

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Example: SQL Injection
SQL manipulation for nefarious purpose

Method
• String manipulation

– Parameters, function calls
• Code injection (e.g. buffer overflow)

Goals
• Fingerprinting

– Learn about service via version, configuration
• DoS
• Bypass authentication/privilege escalation
• Remote execution

Protection
• Parameterized statements
• Filter input
• Limit use of custom functions

April 28, 2018

WebApp Security

39

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

SQL Injection Examples

April 28, 2018

WebApp Security

40

Original query:
“SELECT name, description
FROM items
WHERE id=‘” + req.args.get(‘id’, ‘’) + “’”

Result after injection:
SELECT name, description
FROM items
WHERE id='12’

UNION
SELECT username, passwd FROM users;--';

Original query:
“UPDATE users
SET passwd=‘” + req.args.get(‘pw’, ‘’) + “’
WHERE user=‘” + req.args.get(‘user’, ‘’) + “‘”

Result after injection:
UPDATE users
SET passwd='...'
WHERE user='dude' OR 1=1;--';

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

XKCD: Exploits of a Mom

April 28, 2018

WebApp Security

41

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Best-Effort Injection Prevention
• Validate all input
– Commonly server support (e.g. SQL filtration)

• Filter output
– Commonly library support (e.g. parameterized

queries, ORM)

• NoSQL does not mean no injection!
• Security via layers/assume breakage
– Limit what the user can do if hacked

April 28, 2018

WebApp Security

42

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Web APIs

Nate Derbinsky

April 28, 2018

Web APIs

1

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

WebApp: Big Picture

April 28, 2018

Web APIs

2

Client ServerNetwork

Request (HTTP)

Response (HTTP)

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

WebApp: Big Picture Expanded

April 28, 2018

Web APIs

3

Client ServerNetwork

Request (HTTP)

Response (HTTP)

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Web API
• Allows for communication via HTTP
– Browser-Server: user actions <-> system state
– Server-Server: information exchange

• Could be within/across organizations
• Mostly our focus in this lecture

• Typically RESTful + JSON (or XML)
– Endpoint: basically a function; via docs…

• URL (~ function name, possibly version for stability)
• Arguments (+format) to supply
• Expected output(s) (+format)
• Stateless invocation, cacheability per responses

April 28, 2018

Web APIs

4

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Useful Tools for Testing
• APIGee Console

– https://apigee.com/console/

• Postman
– https://www.getpostman.com/apps

• cURL
– https://curl.haxx.se/download.html

• Languages have libraries for HTTP
– Javascript: https://www.w3schools.com/js/js_ajax_http_send.asp
– JQuery: https://api.jquery.com/jQuery.get/
– Python requests: http://docs.python-requests.org

• Some sites have web-based experimentation consoles specific to
their API

April 28, 2018

Web APIs

5

https://apigee.com/console/
https://www.getpostman.com/apps
https://curl.haxx.se/download.html
https://www.w3schools.com/js/js_ajax_http_send.asp
https://api.jquery.com/jQuery.get/
http://docs.python-requests.org/

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Browser-Server Example (1)
• Albums via Artist Name
– Uses the “Chinook” database
– Bootstrap frontend, Python or Node backend

• https://course.ccs.neu.edu/cs3200sp18s3
/ssl/misc/Web.zip

April 28, 2018

Web APIs

6

https://course.ccs.neu.edu/cs3200sp18s3/ssl/misc/Web.zip

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Browser-Server Example (2)
• Managing a movie “database”
– React frontend, SpringBoot (Java) backend

• https://github.com/jannunzi/react-
springboot-movies

April 28, 2018

Web APIs

7

https://github.com/jannunzi/react-springboot-movies

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Examples (1)
• List of APIs
– programmableweb.com/apis/directory

April 28, 2018

Web APIs

8

https://programmableweb.com/apis/directory

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Examples (2)
• Wikipedia
– Turns out it’s just the general API you get with

MediaWiki

– mediawiki.org/wiki/API:Main_page
– mediawiki.org/w/api.php

– en.wikipedia.org/w/api.php?action=query&titles=
Northeastern%20University&prop=revisions&rvpr
op=content&format=json&formatversion=2

April 28, 2018

Web APIs

9

https://www.mediawiki.org/wiki/API:Main_page
https://www.mediawiki.org/w/api.php
https://en.wikipedia.org/w/api.php?action=query&titles=Northeastern%20University&prop=revisions&rvprop=content&format=json&formatversion=2

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Examples (3)
• Reddit

– reddit.com/dev/api

– reddit.com/r/aww/
– reddit.com/r/aww.json

April 28, 2018

Web APIs

10

https://www.reddit.com/dev/api
https://www.reddit.com/r/aww/
https://www.reddit.com/r/aww.json

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Authentication
• Sometimes an app that uses an API

needs to be able to identify itself to the
service
– Private info access, “premium” API features

• Common methods
– API Key/Token
– OAuth

April 28, 2018

Web APIs

11

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Key/Token
• Secret between you and the API
– Keep this safe!

• Example: GitHub
– https://github.ccs.neu.edu/settings/tokens

• Some services may require you to “sign”
(i.e. encrypt) some/all of your
communication

April 28, 2018

Web APIs

12

https://github.ccs.neu.edu/settings/tokens

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Examples (4)
• OMDB ~ IMDB
– http://www.omdbapi.com

• Free access (via registration) = 1000/day
– Paid = more access, posters
– Append your secret key to all requests

April 28, 2018

Web APIs

13

http://www.omdbapi.com/

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

OAuth

April 28, 2018

Web APIs

14

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

What is OAuth?
• An authorization framework that enables

applications to obtain limited access to user
accounts on an HTTP service

• Basically…
– the app gets a (time/scope-limited) token that…
– provides access to a service on your behalf…
– without you sharing authentication credentials for

the service with the app

April 28, 2018

Web APIs

15

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

OAuth Terms
1. Resource Owner: you

2. Resource Server: service that houses the
resource of interest

3. Authorization Server: verifies resource
owner via authentication, supplies tokens
– May be the same as #2

4. Client: app

April 28, 2018

Web APIs

16

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

Prerequisite: App Registration
• Before being able to use OAuth with a service, the

app must “register” itself
– Typically via developer API/console

• Common info
– App name
– App website
– Callback URL

• Example:
https://developer.github.com/apps/building-
oauth-apps/authorization-options-for-oauth-apps/

April 28, 2018

Web APIs

17

https://developer.github.com/apps/building-oauth-apps/authorization-options-for-oauth-apps/

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

How Does OAuth (2.0) Work?

April 28, 2018

Web APIs

18

CS4550 – Web Development� �� Spring 2018� �� Derbinsky

API Examples (5)
• GitHub

– https://developer.github.com/v3/

April 28, 2018

Web APIs

19

https://developer.github.com/v3/

