

Solving World Problems

Learning One Example at a Time

Problem: Signaling Networks

To <u>treat/cure disease</u>, we need to understand the <u>chains of protein</u> <u>interactions</u> that determine <u>how cells</u> <u>process signals</u> from their environment

Problem: Robotic Interaction

To <u>safely operate</u> in distant/dangerous terrain, we need <u>robotic</u> <u>teammates</u> that can <u>autonomously</u> perceive, understand, interact with, and <u>manipulate</u> <u>their environment</u>

Problem: Winning on the Merits

To enact the <u>best</u> <u>policies</u>, we need to understand what makes for a <u>strong argument</u>

Solving World Problems

The common link in solving these and many other complex problems is the potential for using **Machine Learning**, which exploits...

- Big Data: <u>examples</u> from the world
- Cloud Computation: cheap, fast processing
- Algorithms: automatically <u>uncovering value</u>

Machine Learning

- 1. What is it?
 - Why you should care!
- 2. How does it work?
 - Learn your first ML technique!

http://ai.berkeley.edu

What is Machine Learning?

Computer programs that can improve performance with experience

But Wait...

Why Learn?

Many complex tasks are <u>hard to describe</u>, but <u>easy</u> <u>to learn</u> from experience

Why Now?

Data sources and powerful computing are increasingly cheap and plentiful

Natural Language Processing (NLP)

Modern NLP algorithms are typically based on statistical ML

Applications

- Summarization
- Machine Translation
- Speech Processing
- Sentiment Analysis

Computer Vision

Methods for acquiring, processing, analyzing, and understanding images

Applications

- Image search
- Facial recognition
- Object tracking
- Image restoration

Solving World Problems: Learning One Example at a Time

- - -

Games, Robotics, Medicine, Ads, ...

NETFLI

Solving World Problems: Learning One Example at a Time

June 25, 2018

Jobs!

Position			Salary
Data Scientist Machine Learning Engineer			\$120,931
Software Engineer		\$104,463	
E E Q	The New York Times	Tech Giants Are Paying Salaries for Scarce A.I.	Huge Talent
A.I. Researchers Are Making More Than \$1 Million, Even at a Nonprofit By CADE METZ APPEL 12, 2018		Nearly all big tech comparintelligence project, and the experts millions of dollar Typical A.I. specialists, including both Ph.D.s fresh out of school and people with less education and just a few years of experience, can be paid from \$300,000 to \$500,000 a year or more in salary and company stock, according to nine people who work for major tech companies or have entertained job offers from them. All of them requested anonymity because they did not want to damage their professional prospects.	

"Software Is Eating the World, but AI Is Going to Eat Software" - Jensen Huang (CEO, NVIDIA)

^{*}glassdoor.com, USA National Avg as of April 20, 2018

What does Machine Learning Do?

β

Training Set

Testing Set

1447

ML Terminology

example, instance Unit of input

Composed of *features* (or *attributes*)

- In this case, we could represent each digit via raw pixels: 28x28=784-pixel *vector* of greyscale values [0-255]
 - Dimensionality: number of features per instance (|vector|)
- But other *data representations* are possible, and might be advantageous

 In general, the problem of *feature* selection is challenging

Your First ML Technique: kNN

Training

• Store all examples

Testing

- Find the <u>k neares</u>t <u>neighbors</u> to input
- Vote on output

2D Multiclass Classification

Boundary Tree

1-NN via Linear Scan

Many Approaches

$SSE = Y^{\intercal}Y - 2Y^{\intercal}XB + B^{\intercal}X^{\intercal}XB$

$\frac{\partial \text{SSE}}{\partial B} = -2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}XB$

$$0 = -2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}XB$$
$$-2X^{\mathsf{T}}XB = -2X^{\mathsf{T}}Y$$
$$X^{\mathsf{T}}XB = X^{\mathsf{T}}Y$$
$$B = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

One (of many) Challenges

https://xkcd.com/1838/

What Makes for a "Good" Answer?

Did I Learn Well?

Did I Learn Safely & Ethically?

Learning Signaling Networks

- Using NLP to aggregate and analyze scientific findings
- Given data, learn network structure

Learning Robotic Interaction

- Large-scale robotic grasp training
- Inter-planetary! lacksquare

Learning to Win on the Merits

- Understanding content/style vs strength
- Making new arguments from past experience and data

Opportunities for (Machine) Learning

- 1. Courses
- 2. Research
- 3. Applications

http://ai.berkeley.edu

Fusing Disciplines

CS/ML @ Northeastern

and the contract of the state o

Some Offerings...

- Artificial Intelligence
- Supervised Machine Learning and Learning Theory
- Unsupervised Machine Learning and Data Mining
- Natural Language Processing
- Advanced Machine Learning
- Information Presentation and Visualization
- Robotic Science and Systems
- Pattern Recognition and Computer Vision

Northeastern University

What Problem Will YOU Learn to Solve?

Thank You :) Questions?

Solving World Problems: Learning One Example at a Time

June 25, 2018

NU Talk • June 2018 • Nate Derbinsky