Machine Learning

Nate Derbinsky Assistant Professor Computer Science and Networking

About Me

- Founded a computer consulting business in high school
- PhD from University of Michigan (Go Blue!)
- Imagineer with Disney Research, Boston

What is Machine Learning (ML)?

The study/construction of algorithms that can learn from data

The study of algorithms that improve their performance **P** at some task **T** with experience **E** – Tom Mitchell (CMU)

Fusion of algorithms, artificial intelligence, statistics, optimization theory, visualization, ...

Natural Language Processing (NLP)

Modern NLP algorithms are typically based on statistical ML

Applications

- - -

- Summarization
- Machine Translation
- Speech Processing
- Sentiment Analysis

Spring 2015 | Derbinsky

Computer Vision

Methods for acquiring, processing, analyzing, and understanding images

Applications

- Image search
- Facial recognition
- Object tracking
- Image restoration

Games, Robotics, Medicine, Ads, ...

Different Motivations

Position	Salary [*]
Data Scientist	\$118,709
Machine Learning Engineer	\$112,500
Software Engineer	\$90,374

"A data scientist is someone who knows more statistics than a computer scientist and more computer science than a statistician."

– Josh Blumenstock (UW)

"Data Scientist = statistician + programmer + coach + storyteller + artist" - Shlomo Aragmon (III. Inst. of Tech)

*glassdoor.com, National Avg

Spring 2015

Types of Problems

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Supervised Learning

Training

α

Testing

?

•••

MNIST

Supervised Tasks

Classification

Binary vs. multi-class

Regression

M = 1M = 00 x1 x M = 9M = 30 0 1 \boldsymbol{x}

Issues

- Feature selection
- Overfitting \bullet
 - Regularization, cross validation

Machine Learning

Common Algorithms

- Nearest Neighbor (kNN)
- Decision Tree learning (e.g. ID3, C4.5, RF)
- Support Vector Machine (SVM)
- Neural Networks
 - Backpropagation
 - Deep learning

kNN

Training

• Store all examples

Testing

- Find the nearest *k* neighbors to target
 - Via distance function
- Vote on class

Derbinsky

2D Multiclass Classification

Boundary Tree

1-NN via Linear Scan

MATH 650 - Machine Learning, Wentworth Institute of Technology

24 October 2014

Decision Trees/Forests

Support Vector Machine (SVM)

Spring 2015

Derbinsky

Artificial Neural Networks (ANN)

Gradient descent

21 January 2015

Backpropagation

Feedforward vs. Recurrant

Deep Architectures Vanishing Gradient

Unsupervised Learning

No right answer, find "interesting structure"

<u>Tasks</u>

- Clustering
- Dimensionality reduction
- Density estimation
- Discovering graph structure
- Matrix completion

Spring 2015

Common Algorithms

k-Means Clustering

http://web.stanford.edu/~kvmohan/kmeansvoronoi/kmeans.html

- Collaborative Filtering
- Principle Component Analysis (PCA)
- Expectation Maximization (EM)
- Neural Networks (e.g. RBM)

Spring 2015 | Derbinsky

Reinforcement Learning (RL) Choose actions to maximize future reward

Spring 2015

Derbinsky

The RL Cycle

Issues. credit assignment, exploration vs. exploitation, reward function, ...

Temporal Difference (TD) Learning

 $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$

- Evidence that some neurons (dopamine) operate similarly
- Lead to world-class play via TD-Gammon (neural network trained via TD-learning)

Challenges

- Big Data
 - Parametric vs. Nonparametric
- Curse of Dimensionality
- No Free Lunch

Big Data – The Four V's

Parametric algorithm: model does not grow with data size

The Curse of Dimensionality

"Various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience." – Wikipedia

- Memory requirement increases
- Required sampling increases
- Distance functions become less useful

. . .

No Free Lunch

- There is no universally best model a set of assumptions that works well in one domain may work poorly in another
- We need many different models, and algorithms that have different speedaccuracy-complexity tradeoffs

Some Nice Starting Points

<u>Books</u>

- "Machine Learning in Action"
- "Data Mining: Practical Machine Learning Tools and Techniques"
- "Pattern Recognition and Machine Learning"
- "Machine Learning: A Probabilistic Perspective"

<u>Courses</u>

- Fall 2015 @ WIT (MATH+COMP)!
- Coursera: <u>https://www.coursera.org/course/ml</u>
- CMU: <u>http://www.cs.cmu.edu/~tom/10701_sp11/</u>
- UW: <u>https://class.coursera.org/datasci-002/lecture</u>

<u>Sites</u>

- DataTau/Kaggle
- MNIST/UCI Machine Learning Repository
- DataQuest.io
- deeplearning.net
- neuralnetworksanddeeplearning.com

Academia

- E/ICML
- NIPS
- AAAI
- UAI

Machine Learning

Thank You :) Questions?

Nate Derbinsky Dobbs 140 derbinskyn@wit.edu http://derbinsky.info

