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« Founded a computer =Lk
consulting business in dlen
high school Z

Retrieval Latency: Chunks in DM x Retrieval Constraints x Type of DM

* PhD from University of
Michigan (Go Blue!)

* Imagineer with Disney
Research, Boston
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What is Machine Learning (ML)?

The study/construction of algorithms that can
learn from data

The study of algorithms that improve their
performance P at some task T with experience E

— Tom Mitchell (CMU)

Fusion of algorithms, artificial intelligence,
statistics, optimization theory, visualization, ...
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Natural Language Processing (NLP)

, Modern NLP algorithms
‘.: are typically based on
' statistical ML

Applications
— Summarization
— Machine Translation
— Speech Processing
— Sentiment Analysis
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Computer Vision

Methods for acquiring,
processing, analyzing,
and understanding
Images

Applications
— Image search
— Facial recognition
— Object tracking
— Image restoration
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Games, Robotics, Medicine, Ads, ...
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Different Motivations

___ Poson | sy

Data Scientist $118,709
Machine Learning Engineer $112,500
Software Engineer $90,374

“A data scientist is someone who knows more statistics than a computer
scientist and more computer science than a statistician.”
— Josh Blumenstock (UW)

“Data Scientist = statistician + programmer + coach + storyteller + artist”
— Shlomo Aragmon (lll. Inst. of Tech)

“glassdoor.com, National Avg

788 Machine Learning

21 January 2015



Wentworth Institute of Technology COMP543 — Artificial Intelligence | Spring 2015 | Derbinsky

Types of Problems

* Supervised Learning
* Unsupervised Learning
* Reinforcement Learning
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Supervised Learning

Training
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Supervised Tasks

Classification

Binary vs. multi-class

Regression

Issues

 Feature selection
« Overfitting

— Regularization, cross validation
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Common Algorithms

* Nearest Neighbor (KNN)
* Decision Tree learning (e.g. ID3, C4.5, RF)
* Support Vector Machine (SVM)

* Neural Networks
— Backpropagation
— Deep learning
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KNN

Training Testing

« Store all examples * Find the nearest k
neighbors to target

— Via distance function
 \ote on class
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2D Multiclass Classification

Boundary Tree 1-NN via Linear Scan

@ s “ MATH 650 - Machine Learning, Wentworth Institute of Technology

24 October 2014
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Decision Trees/Forests

Petal.Length < 2.45
1

Petal.Width < 1.75

setosa
Petal.Length < 4.95 Petal.Length < 4.95
lSepaI.Ler{gth < 54? ' | _ virginica virginica
versicolor versicolor vEgmica
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Support Vector Machine (SVM)
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Artificial Neural Networks (ANN)

X1 Wi
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Perceptron
Linear classifier
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Unsupervised Learning

No right answer, find “interesting structure”

Tasks
— Clustering
— Dimensionality reduction
— Density estimation
— Discovering graph structure
— Matrix completion
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Common Algorithms

* k-Means Clustering

http://web.stanford.edu/~kvmohan/kmeans-
voronoi/kmeans.html

» Collaborative Filtering

* Principle Component Analysis (PCA)
* Expectation Maximization (EM)

* Neural Networks (e.g. RBM)

No o
'S Machine Learning
21 January 2015




Wentworth Institute of Technology COMP543 — Artificial Intelligence | Spring 2015 | Derbinsky

Reinforcement Learning (RL)

Choose actions to maximize future reward

When Pavlov's Dog Begs ... — . -
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The RL Cycle

Issues. credit assignment, exploration vs.
exploitation, reward function, ...
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Temporal Difference (TD) Learning

Q(St, at) — Q(St, Clt) + 04[7“1:+1 =+ ’VQ(St—Ha Clt+1) — Q(Sta at)]

* Evidence that some neurons (dopamine)
operate similarly

» Lead to world-class play via TD-Gammon
(neural network trained via TD-learning)
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Challenges
* Big Data

— Parametric vs. Nonparametric

« Curse of Dimensionality
* No Free Lunch
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Big Data — The Four V's

Data Volume Data Veracity

Uncertain

Certain

Homogenous

Heterogeneous

Real-time

Data Velocity Data Variety

Parametric algorithm: model does not grow with data size
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The Curse of Dimensionality

“Various phenomena that arise when analyzing and
organizing data in high-dimensional spaces (often
with hundreds or thousands of dimensions) that do
not occur in low-dimensional settings such as the
three-dimensional physical space of everyday
experience.” — Wikipedia

 Memory requirement increases
* Required sampling increases
« Distance functions become less useful

3
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No Free Lunch

* There is no universally best model — a set
of assumptions that works well in one
domain may work poorly in another

* We need many different models, and
algorithms that have different speed-
accuracy-complexity tradeoffs
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Some Nice Starting Points

Books

*  “Machine Learning in Action”

+  “Data Mining: Practical Machine Learning Tools and Techniques”
+  “Pattern Recognition and Machine Learning”

*  “Machine Learning: A Probabilistic Perspective”

Courses

+ Fall 2015 @ WIT (MATH+COMP)!

*  Coursera: https://www.coursera.org/course/ml
CMU: http://www.cs.cmu.edu/~tom/10701_sp11/
UW: https://class.coursera.org/datasci-002/lecture

»

ites
DataTau/Kaggle
MNIST/UCI Machine Learning Repository
DataQuest.io
deeplearning.net
* neuralnetworksanddeeplearning.com

Academia

. E/ICML
. NIPS

« AAAI

. UAI
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Thank You :)

Questions?

Nate Derbinsky
Dobbs 140
derbinskyn@wit.edu
http://derbinsky.info
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