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Research Areas

Research Areas
Computer Graphics

Our research competency in computer
‘graphics is especially mature. Our
entertainment businesses provide diverse
target applications for our pioneering work.
“This allows us to achieve a rar leval of
cross-fertlization by juxtaposing real-time
algoriths for the game studios with high-
nd techniques for the movie studios,
achieving speed and directabiity in physical
simulation, spanning visual styles from
photorealistic to artistc, and blurting the
boundaries between computer graphics and
materials science.

Computer Vision

Guest interaction at theme parks, motion
‘capture for studios, and sports visualization
are just a few of the direct appiications for
‘our computer-vision reseach. We also
perform research in which computer vision
intersects with human-computer interacion,
video processing, display technology, and
‘optics: it plays a role in our work on input
devices, content-aware video processing,
projector-camera systems, and
‘computational cinematography.

Wireless Communication and
Mobile Computing

The unparalleled scale and density of
Disney's physical venues give ise to
wireless-research topics in relatively
uncharted operating regimes, with cost
structures that can amortize across tens to
hundreds of millions of units. Our work
focuses on the physics of radio and antennas
—with applications both analog and digital —
a5 wel as the algorithms and protocols
necessary for wireless networking. Our
rasearch agenda is inspired primarily by
‘opporturities at Wa Disney Parks and
Resorts and at ESPN.

Behavioral Sciences

Our unique investigations into consumer
behavior often taka the form of fiekd
experiments with “real-fe” Disney guests
and customers. More recent projects have
begun to shift 1o the intersaction of
technology (particularly mobile) and
‘consumer behavior. We also study other
aspects of tha media consumption
experience. Our goals are to enhance guest
satistaction, test new business models, and
further Disney’s aims around social
‘consciousness and sustainabilty.
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Disney Research
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Video Processing

A Disney story is often told through video,
‘whether it's a movie, a serial, a newscast, or
professional sports. This raises a gamut of
research challenges with hard-hitling
‘sconomic impact: for example, automating
labor-intensive processes while presarving
art directabilty, avoiding expensive reshoots.
by adding content-aware flexibiity in
postproduction, and adapting to a workd with
increasingly diverse devices.

Robotics

Inthis arena, we're addressing a portiolio of
rasearch problems whose appiications range
from shorterm improvements to longterm
challenges. Utimately, we envision a future
in which robots interact with humans in
‘complex, unpredictable environments. We're
‘working toward this vision by addressing
‘constituent problems in computer graphics,
‘control techniques for humanoid robolics,
and human-robot interaction. We also create
opportunites of immeiate, shortterm
interest intended to improve operational
costs and maintainabily.

Human-Computer Interaction

We're interested in the many ways computer
interfaces can span the digial and tangible
‘worlds, giving rise to quaitatively new
‘experiences. Our agenda takes advantage of
technologies that are relativaly new in the
‘commercial world, and whose interactions
have not yet been fully explored. Our
researchers invent new technologies for
sensing touch and pose, s well as creating
new sensory axperiences such as haptic
ilusions.

Materials Research

The computational material groups
investigates novel algorithms and
approaches for acquiring, simulating, and
fabricating materials and objects. Our vision
is to bridge the gap batween the virtual and
real world, allowing seamless transitions
using novel measurement and rapid
prototyping devices. We also focus on the
representation and intuitive editing of
material properties, allowing to design and
create custom products for unique customer
experiences.
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A Common Problem

Approximate complicated functions
Approximate NN -> Classification, Regression

Requirements

* Incremental

* Fastto train & query

* Scale well given a large number of examples/dimensions

Potential Application Areas

e Real-time learning (e.g. robotics ala RL, vision)
— Perception, action modeling

» Scalable optimization/simulation




Boundary Forest

Online algorithm that performs effectively and efficiently
e Accuracy: “kNN

 Time: O(logN ), both train & query

e Memory: O(N)

Ensemble of Boundary Trees, each...

» stores a subset of examples (i.e. instance-based/non-parametric)
— only those that inform “boundaries” (similar to incremental Condensed NN)

* incrementally builds a graphical search structure

— queries/trains by greedily following/appending-to a search tree w.r.t. distance
metricd( x, y )




A 2D Classification Example
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Interleaved Train/Query (1)

Ground Truth Boundary Tree
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Interleaved Train/Query (2)

Ground Truth Boundary Tree
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Interleaved Train/Query (3)

Ground Truth Boundary Tree
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Interleaved Train/Query (4)

Ground Truth Boundary Tree
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Interleaved Train/Query (5)

Ground Truth Boundary Tree
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Interleaved Train/Query (6)

Ground Truth Boundary Tree
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Interleaved Train/Query (7)

Ground Truth Boundary Tree
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Interleaved Train/Query (8)

Ground Truth Boundary Tree
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Performance & Scaling

Boundary Tree 1-NN via Linear Scan



Improving Accuracy via Forests
Linear increase in memory + time

1 Tree 10 Trees

Trained=101, Stored=47 Trained=101, Stored=431

10000 test points: 69.57% in 4msec 10000 test points: 73.58% in 133 msec
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Classification Results
MNIST (60k training, 10k testing, 784 pixels)

Wall Clock Time (seconds)

_ \
BF( 50, 50 ) 103 105.3

ETE o 2900 2900.0

Il | § & 3
ETEE o 3200 — 7S 353
55906
m 310 0.3 310.3 239200

Error, Euclidean Distance

BF(1,50) | 1-CNN_| RF(50,50) | 1NN __| _3-NN__| BF(50,50)

12.15% 6.70% 3.16% 3.09% 2.83% 2.32%
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Regression Results
YearPredictionMSD

* 463,715 (training) / 51,630 (testing)
e 90 features
e ~30x faster than 1-NN

RMSE, Euclidean Distance

1NN | 3NN | BF(50,50)
14.05 11.59 10.41
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Algorithm Sketch

Required Parameters

* n,=number of trees

* k=maximum outdegree

— Typically leads to eventual logarithmic scaling

e d(x,y)=distance metric

— Need not be true metric, no assumptions made
about properties



Algorithm Sketch

Boundary Tree

Query(y) Train(y)
* v=root ° n-= Query( y )
* loop + if ShouldAdd

— cand = children(v) | ou ( n, y)

— i |children(v)| < k — Connect(n, y)

e cand=cand Uv

= Vmin= argminw<cand d( W, y)

— ifv,,, = v:break;

— V=V, ShouldAdd
Result * NN: True
 NN:v_, * Classification: Diff. Class
* Classification: class( v, ) . Regression: Diff. by €

* Regression: value( v, )



Algorithm Sketch

Boundary Forest

Query(y) Train(y)
* fort,:trees * fort;:trees
— result[i]=t.Test(y) — t.Train(y)
Result Initialization
e NN: smallest d * Root(t;)=example[/]
e Classification: 1/d vote * r=remaining (n;-1)

* Regression: 1/d average — t.Train(Rand(r, 7))



Evaluation

* Fast & online algorithm * Needs a metric; little

that’s easy to code/

exploration of dynamic

understand distance functions
* Good performance on * No work yet studying
classification, regression, structured/temporal
a-NN retrieval representations
 Many potential * Future: incorporating

applications
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Thank You :)

Questions?

Nate Derbinsky
Assistant Professor
Computer Science and Networking
derbinskyn@wit.edu - DOBBS 140

%fsnep Research
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