What is Machine Learning?

Nate Derbinsky

Associate Teaching Professor Director of Teaching Faculty

My Path to CCIS @ Northeastern

bitXsolutions

1998-2009

BitX Solutions, Inc. Founder & President

• {.gov .edu .org .com} x {desktop web mobile}

2002-2006

NC State. BS Computer Science

TA, DBMS

2006-2012

U of Michigan. MS/PhD Comp Sci and Eng

TA, AI+DBMS

2012-2014

Disney Research. Postdoctoral Associate

Machine Learning, Optimization, Robotics

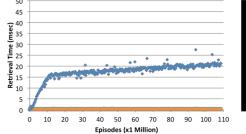
2014-2017

Wentworth. Assistant Professor

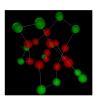
3-3, Research/Service Learning

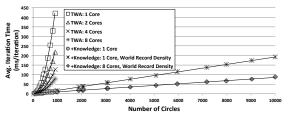
Research Interests

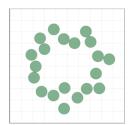
Cognitive Systems



Scalable Optimization

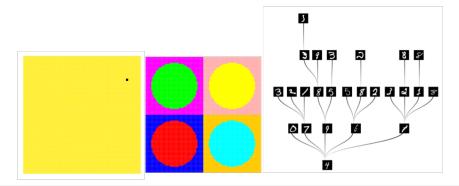






Al Applications/Education

Online ML



Teaching

K-12/ICT-D

UG/Grad

- CS1/2
 - OOP, Foundations
- Databases, Web
- AI, Machine Learning
- HTMAA
 - RPi, Arduino

Agenda

- What is Machine Learning?
- Key Terminology/Tasks
- Challenges/Issues

What is Machine Learning?

Computer programs that can <u>improve</u> <u>performance with experience</u>

But Wait...

Why Learn?

Many complex tasks are hard to describe, but easy to learn from experience

Why Now?

Data sources and powerful computing are increasingly cheap and plentiful

Natural Language Processing (NLP)

Modern NLP algorithms are typically based on statistical ML

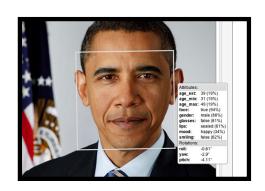
Applications

- Summarization
- Machine Translation
- Speech Processing
- Sentiment Analysis

. . .

Computer Vision

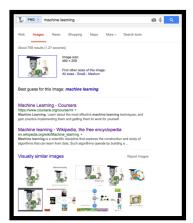
Methods for acquiring, processing, analyzing, and understanding images



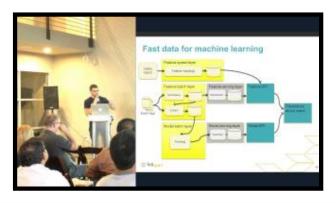
Applications

- Image search
- Facial recognition
- Object tracking
- Image restoration

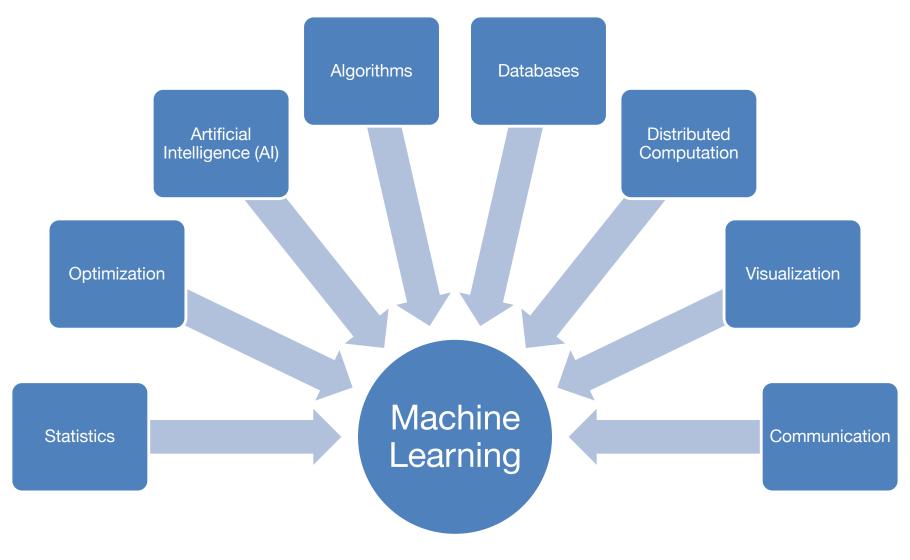
. . .



Games, Robotics, Medicine, Ads, ...



Fusing Disciplines



What is Machine Learning?

Machine Learning Pipeline

API Sensors **DBMS** query **Association** Classification Clustering Outlier detection

Pipelining Scaling

Integration Normalization Feature selection Binning Dimension red.

Evaluation Interpretation Visualization

Johs

Position	Salary
Data Scientist	\$139,840
Software Engineer	\$115,462

Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent

Nearly all big tech compa: Typical A.I. specialists, including both Ph.D.s fresh out of school and people intelligence project, and tl with less education and just a few years of experience, can be paid from experts millions of dollar \$300,000 to \$500,000 a year or more in salary and company stock, according to nine people who work for major tech companies or have entertained job offers from them. All of them requested anonymity because they did not want to damage their professional prospects.

"A data scientist is someone who knows more statistics than a computer scientist and more computer science than a statistician."

- Josh Blumenstock (UW)

"Data Scientist = statistician + programmer + coach + storyteller + artist"

- Shlomo Aragmon (III. Inst. of Tech)

"Software Is Eating the World, but AI Is Going to Eat Software"

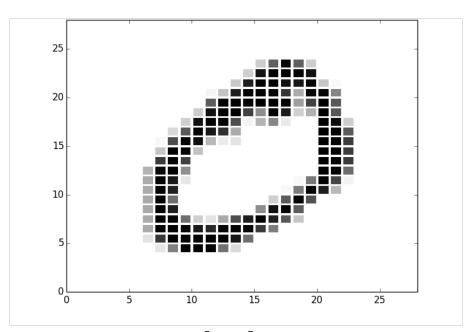
Jensen Huang (CEO, NVIDIA)

*glassdoor.com, National Avg as of October 20, 2018

What is Machine Learning?

October 26, 2018 13

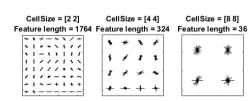
Common Terminology



example, instance
Unit of input

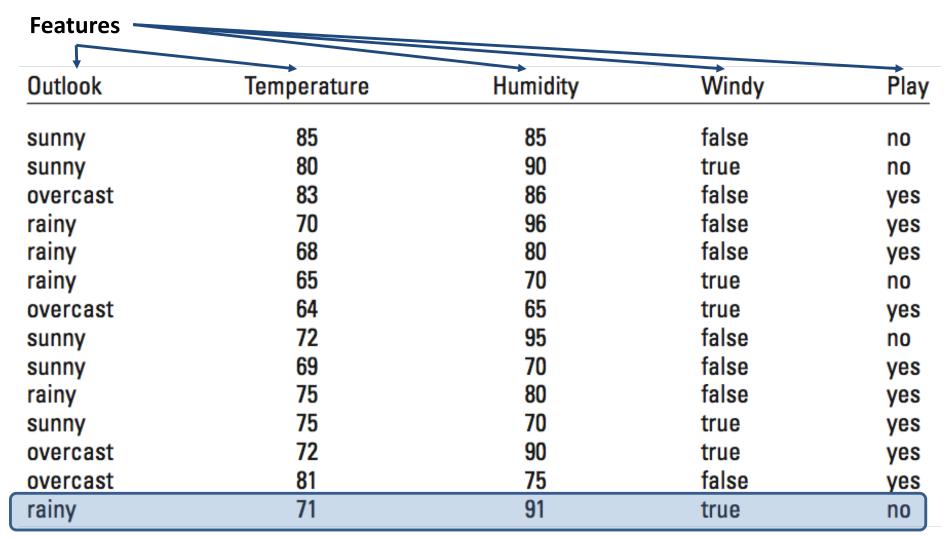
Composed of **features** (or **attributes**)

- In this case, we could represent each digit via raw pixels: 28x28=784-pixel *vector* of greyscale values [0-255]
 - Dimensionality: number of features per instance (|vector|)
- But other data representations are possible, and might be advantageous



In general, the problem of *feature* selection is challenging

Instances/Features = Table



Instance

What is Machine Learning?

"Target" Feature

When trying to predict a particular feature given the others

target, label, class, concept, dependent

Outlook	Temperature	Humidity	Windy	Play
sunny	85	85	false	no
sunny	80	90	true	no
overcast	83	86	false	yes
rainy	70	96	false	yes
rainy	68	80	false	yes
rainy	65	70	true	no
overcast	64	65	true	yes
sunny	72	95	false	no
sunny	69	70	false	yes
rainy	75	80	false	yes
sunny	75	70	true	yes
overcast	72	90	true	yes
overcast	81	75	false	yes
rainy	71	91	true	no

What is Machine Learning?

Machine Learning Tasks

Supervised

 Given a dataset of input-output pairs, learn a function that maps future (novel) inputs to appropriate outputs

Unsupervised

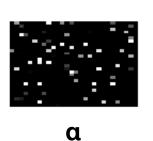
Given a dataset and a hypothesis, find interesting patterns/parameters

Reinforcement

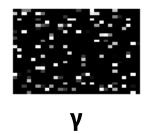
Learn an optional action *policy* over time; given an environment that provides states, affords actions, and provides feedback as numerical *reward*, maximize the *expected* future reward

Supervised Learning (1)

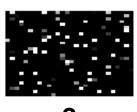
Supervised Learning (2)







Testing Set



Supervised Tasks (1)

Classification

Discrete target

Binary vs. multi-class

SepalLength	SepalWidth	PetalLength	PetalWidth	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa

Supervised Tasks (2)

Regression

Continuous target

mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
18	8	307	130	3504	12	70	1	chevrolet chevelle malibu
15	8	350	165	3693	11.5	70	1	buick skylark 320
18	8	318	150	3436	11	70	1	plymouth satellite
16	8	304	150	3433	12	70	1	amc rebel sst
17	8	302	140	3449	10.5	70	1	ford torino
15	8	429	198	4341	10	70	1	ford galaxie 500
14	8	454	220	4354	9	70	1	chevrolet impala
14	8	440	215	4312	8.5	70	1	plymouth fury iii
14	8	455	225	4425	10	70	1	pontiac catalina
15	8	390	190	3850	8.5	70	1	amc ambassador dpl
15	8	383	170	3563	10	70	1	dodge challenger se
14	8	340	160	3609	8	70	1	plymouth 'cuda 340
15	8	400	150	3761	9.5	70	1	chevrolet monte carlo
14	8	455	225	3086	10	70	1	buick estate wagon (sw)
24	4	113	95	2372	15	70	3	toyota corona mark ii
22	6	198	95	2833	15.5	70	1	plymouth duster
18	6	199	97	2774	15.5	70	1	amc hornet
21	6	200	85	2587	16	70	1	ford maverick
27	4	97	88	2130	14.5	70	3	datsun pl510
26	4	97	46	1835	20.5	70	2	volkswagen 1131 deluxe sedan
25	4	110	87	2672	17.5	70	2	peugeot 504
24	4	107	90	2430	14.5	70	2	audi 100 ls
25	4	104	95	2375	17.5	70	2	saab 99e
26	4	121	113	2234	12.5	70	2	bmw 2002

What is Machine Learning?

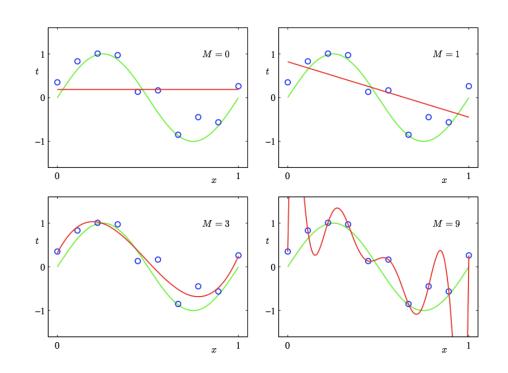
Under/Over-fitting

Underfitting: the model does not capture the important relationship(s)

Overfitting: the model describes noise instead of the underlying relationship

Approaches

- Regularization
- Robust evaluation
 - Cross validation



Validation Set

- One approach in an ML-application pipeline is to use a *validation* dataset (could be a *holdout* from the training set)
- Each model is built using just training; the validation dataset is then used to compare performance and/or select model parameters
- But still, the final performance is only measured via an independent test set

More Training Data = Better

- In general, the greater the amount of training data, the better we expect the learning algorithm to perform
 - But we also want reasonable amounts of validation/testing data!
- So how do we not delude ourselves, achieve high performance, and a reasonable expectation of future performance?

k-Fold Cross Validation

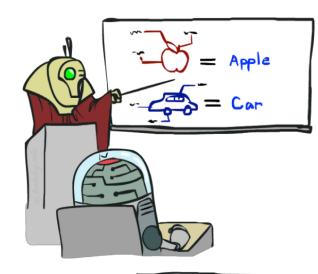
Held-Out Data

Training Data

Held-Out Data Training Data

Held-Out Data

> Test Data



26

Common Algorithms

- Instance-based
 - Nearest Neighbor (kNN)
- Tree-based
 - ID3, C4.5, Random Forests
- Optimization-based
 - Linear regression, logistic regression, support vector machines (SVM)
- Probabilistic
 - Naïve Bayes, HMM
- Artificial Neural Networks
 - Backpropagation
 - Deep learning

kNN

Training

Store all examples

Testing

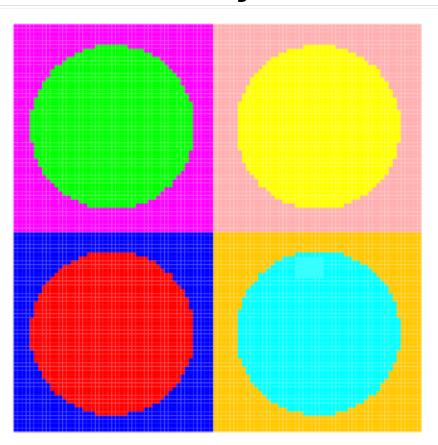
- Find the nearest k
 neighbors to target
 - Via distance function
- Vote on class

3 Company of the second of the

Non-parametric algorithm (i.e. grows with |examples|!)

2D Multiclass Classification

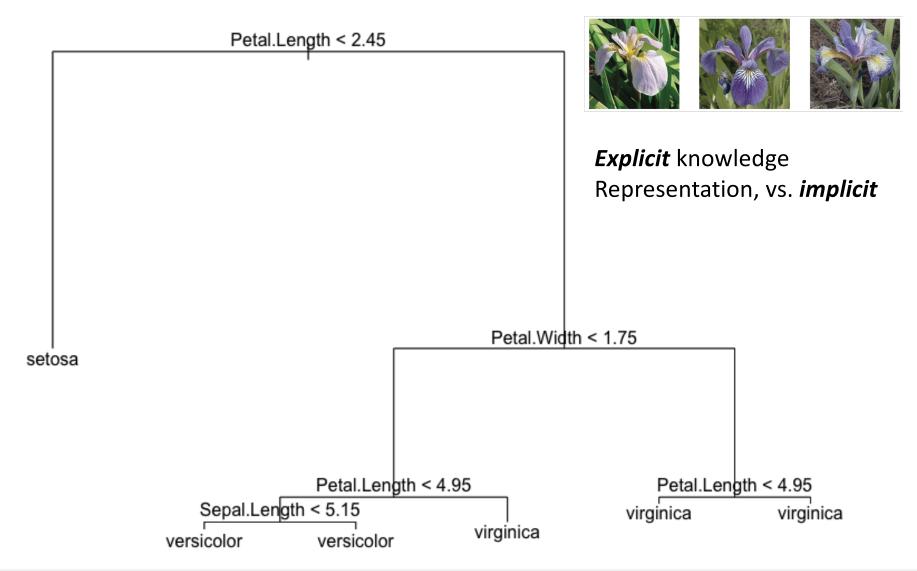
Boundary Tree



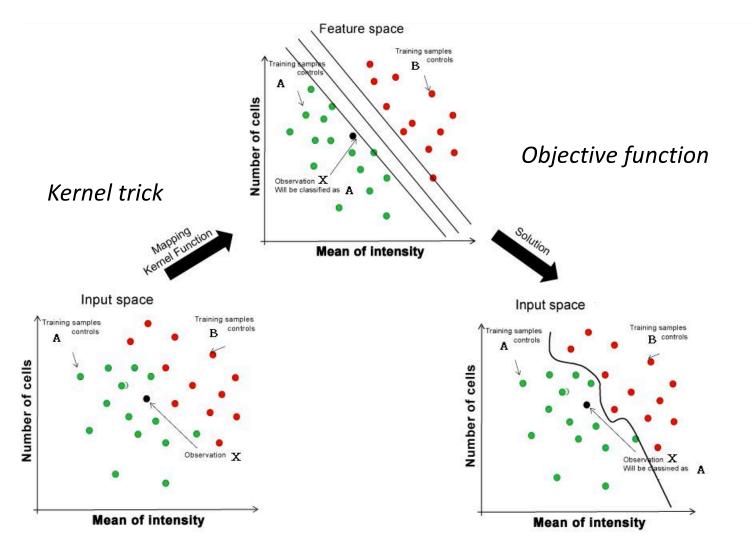
1-NN via Linear Scan

What is Machine Learning?

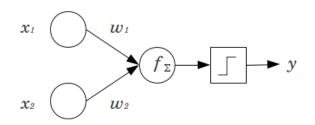
Decision Trees/Forests



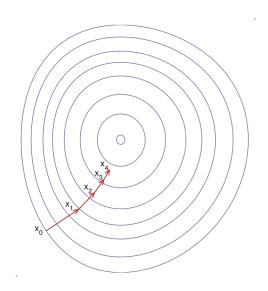
Support Vector Machine (SVM)



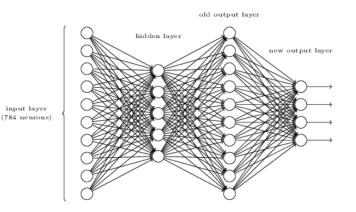
Artificial Neural Networks (ANN)



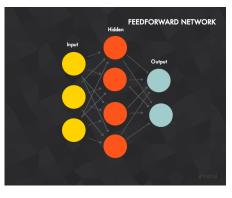
Perceptron Linear classifier



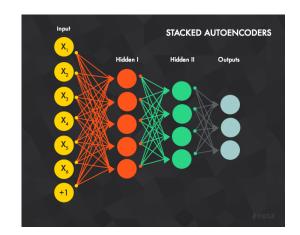
Gradient descent



Backpropagation



Feedforward vs.
Recurrant



Deep Architectures Vanishing Gradient

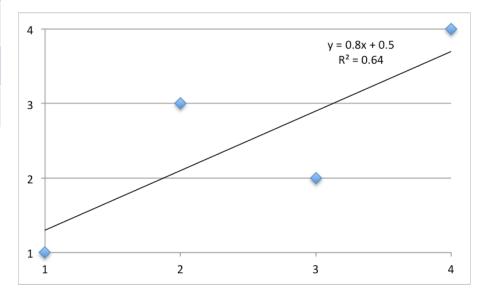
What is Machine Learning?

Example: Linear Regression

Input

X	у
1	1
2	3
3	2
4	4

Output



What is Machine Learning?

Linear Regression as Optimization

- Why this line?
 - Minimizer error
- In 2D, the algorithm tries to find a slope and intercept that yields the smallest sum of the square of the error (SSE)

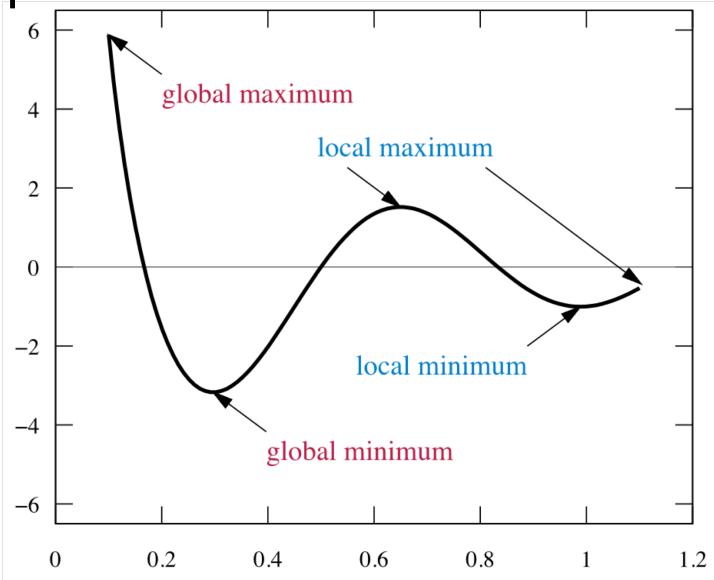
$$\underset{m,b}{\operatorname{arg\,min}} \sum_{i=1}^{N} e_i^2 = (y_i - (mx_i + b))^2$$

Machine Learning via Optimization

- 1. Define an error function
- 2. Find model parameters that minimize the error function given the data
 - Sometimes closed-form solution (e.g. linear)
 - Sometimes [iterative] solution [with guarantees] (e.g. convex)
 - Most of the time will require approximation
 - Iteration (limited by number, delta)
 - Softening constraints
 - Post-processing

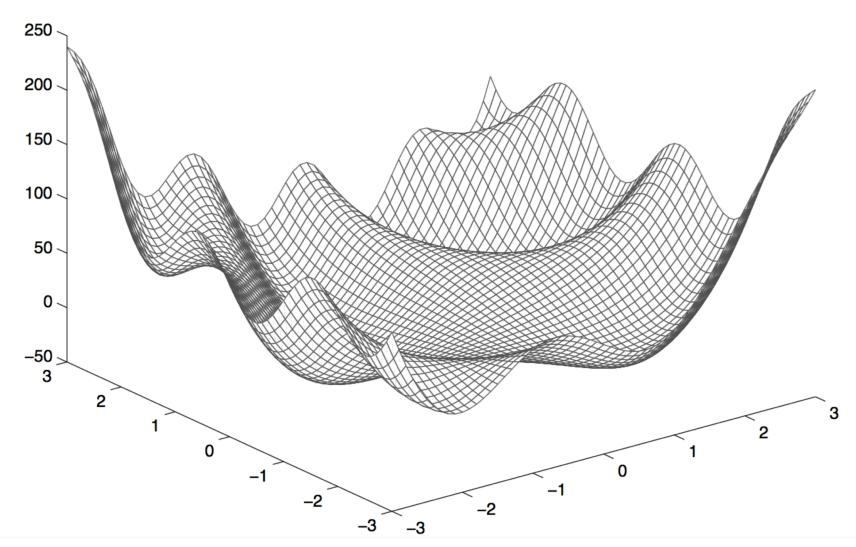
. . .

Optimization is Hard in General



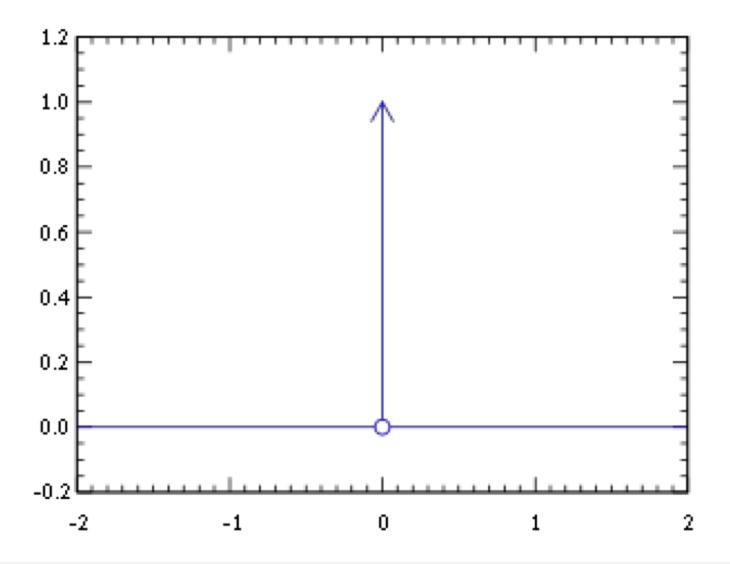
What is Machine Learning?

Consider Many [Cursed] Dimensions



What is Machine Learning?

Consider Discontinuities

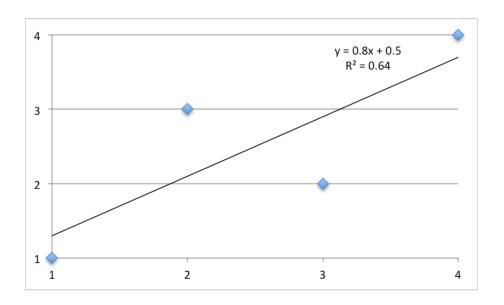


What is Machine Learning?

Linear Regression

Recipe

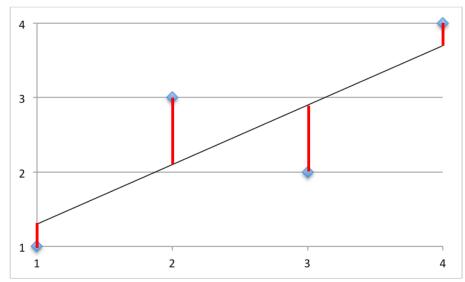
- 1. Define error function
- 2. Find parameter values that minimize error given the data



Error Function

Sum of Squared Error (SSE) aka Residual Sum of Squares (RSS)

$$SSE_{line} = \sum_{i=1}^{N} (y_i - f(x_i)) = (y_i - (mx_i + b))^2$$



What is Machine Learning?

Algebra (1)

$$SSE_{line} = \sum_{i=1}^{N} (y_i - (mx_i + b))^2$$

$$= \sum_{i=1}^{N} y_i^2 - 2y_i(mx_i + b) + (mx_i + b)^2$$

$$= \sum_{i=1}^{N} y_i^2 - 2mx_iy_i - 2by_i + m^2x_i^2 + 2mbx_i + b^2$$

What is Machine Learning?

Algebra (2)

$$\sum_{i=1}^{N} a_i = N\overline{a}$$

SO...

$$SSE_{line} = \sum_{i=1}^{N} y_i^2 - 2mx_iy_i - 2by_i + m^2x_i^2 + 2mbx_i + b^2$$
$$= N\overline{y^2} - 2Nm\overline{xy} - 2Nb\overline{y} + Nm^2\overline{x^2} + 2Nmb\overline{x} + Nb^2$$

Recall: Critical Points

 For a differentiable function of several variables, a critical point is a value in its domain where all partial derivatives are zero

 So to find the point at which error is minimized, we take partial derivatives of the error function w.r.t. the parameters, set these equal to 0, solve

Calculus (1)

$$SSE_{line} = N\overline{y^2} - 2Nm\overline{xy} - 2Nb\overline{y} + Nm^2\overline{x^2} + 2Nmb\overline{x} + Nb^2$$

$$\frac{\partial SSE_{line}}{\partial m} = -2N\overline{xy} + 2Nm\overline{x^2} + 2Nb\overline{x} = 0$$

$$\frac{\partial SSE_{line}}{\partial b} = -2N\overline{y} + 2Nm\overline{x} + 2Nb = 0$$

Algebra (3)

$$\frac{\partial SSE_{line}}{\partial b} = -2N\overline{y} + 2Nm\overline{x} + 2Nb = 0$$

$$0 = -2N\overline{y} + 2Nm\overline{x} + 2Nb$$

$$0 = -\overline{y} + m\overline{x} + b$$

$$\overline{y} = m\overline{x} + b$$

 $(\overline{x},\overline{y})$

Algebra (4)

$$\frac{\partial SSE_{line}}{\partial m} = -2N\overline{xy} + 2Nm\overline{x^2} + 2Nb\overline{x} = 0$$

$$0 = -2N\overline{xy} + 2Nm\overline{x^2} + 2Nb\overline{x}$$

$$0 = -\overline{xy} + m\overline{x^2} + b\overline{x}$$

$$\overline{xy} = m\overline{x^2} + b\overline{x}$$

$$\frac{\overline{xy}}{\overline{x}} = m\frac{\overline{x^2}}{\overline{x}} + b$$

 $(\frac{\overline{x^2}}{\overline{x}}, \frac{\overline{xy}}{\overline{x}})$

And Finally...

$$(\overline{x}, \overline{y})$$

$$(\frac{\overline{x^2}}{\overline{x}}, \frac{\overline{xy}}{\overline{x}})$$

$$m = \frac{\frac{\overline{x}\overline{y}}{\overline{x}} - \overline{y}}{\frac{\overline{x}^2}{\overline{x}} - \overline{x}}$$
$$= \left(\frac{\overline{x}\overline{y} - \overline{x}\overline{y}}{\overline{x}^2} - \overline{x}^2\right)$$

$$\overline{y} = m\overline{x} + b$$

$$b = \overline{y} - m\overline{x}$$

The Multi-Dimensional Case

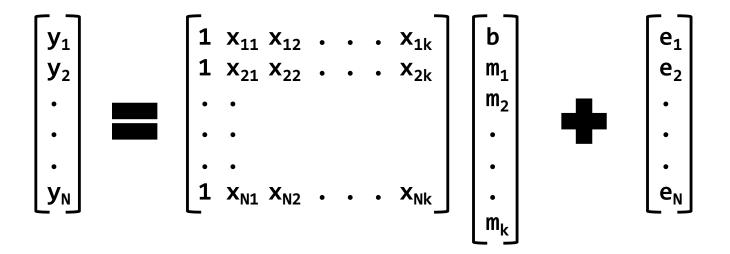
We begin with an analogous representation

$$Y = XB + e$$

where...

- -Y is N x 1
- $-\mathbf{X}$ is N x (k+1); extra 1 to multiply intercept
- B is (k+1) x 1; first intercept, then coefficients
- e is N x 1

k-Dimensional Linear Regression



49

Step 1: Error Function

 We will use the same error method as last time, which is SSE (i.e. square the difference between Y and XB)

$$SSE = e^{\mathsf{T}}e$$
$$= (Y - XB)^{\mathsf{T}}(Y - XB)$$

Matrix Algebra (1)

$$SSE = (Y - XB)^{\mathsf{T}}(Y - XB)$$

$$= (Y^{\mathsf{T}} - B^{\mathsf{T}}X^{\mathsf{T}})(Y - XB)$$

$$= Y^{\mathsf{T}}Y - Y^{\mathsf{T}}XB - B^{\mathsf{T}}X^{\mathsf{T}}Y + B^{\mathsf{T}}X^{\mathsf{T}}XB$$

$$= Y^{\mathsf{T}}Y - 2Y^{\mathsf{T}}XB + B^{\mathsf{T}}X^{\mathsf{T}}XB$$

Matrix Calculus (1)

$$SSE = Y^{\mathsf{T}}Y - 2Y^{\mathsf{T}}XB + B^{\mathsf{T}}X^{\mathsf{T}}XB$$

$$\frac{\partial SSE}{\partial B} = -2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}XB$$

Matrix Algebra (2)

$$0 = -2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}XB$$
$$-2X^{\mathsf{T}}XB = -2X^{\mathsf{T}}Y$$
$$X^{\mathsf{T}}XB = X^{\mathsf{T}}Y$$
$$B = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$

Unsupervised Learning

Find structure or patterns in data

Tasks

- Clustering
- Dimensionality reduction
- Density estimation
- Discovering graph structure
- Matrix completion

. . .

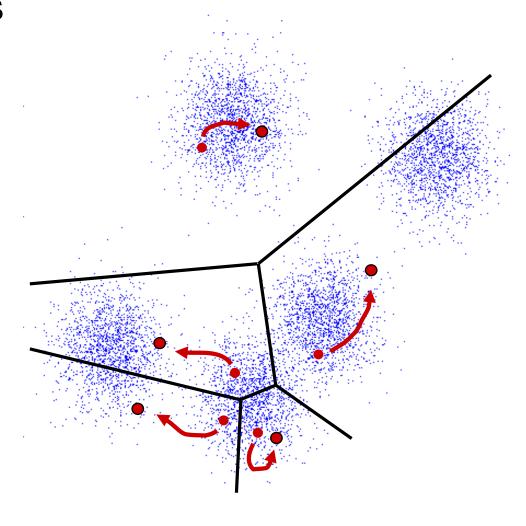


Common Algorithms

- k-Means Clustering
- Collaborative Filtering
- Principle Component Analysis (PCA)

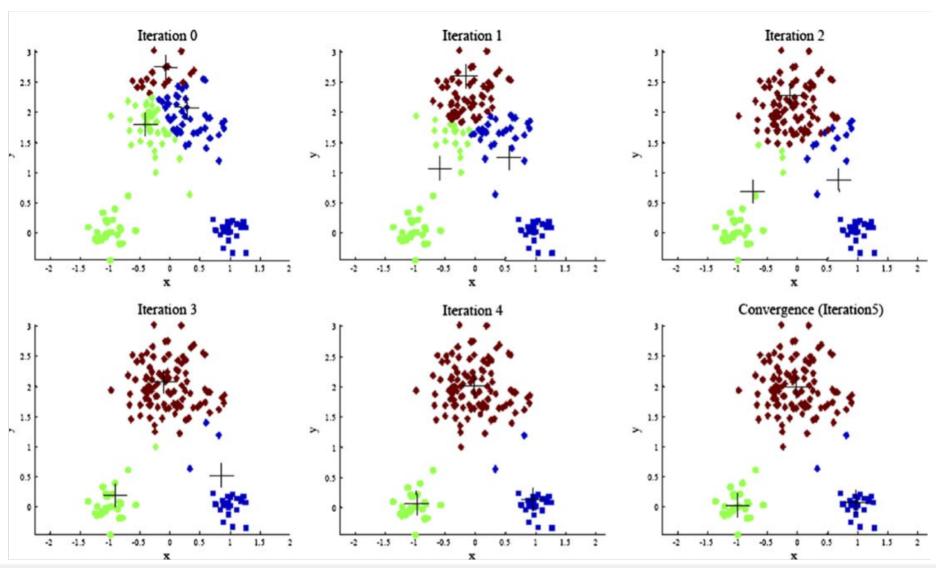
k-Means Clustering (1)

- Pick K random points as cluster centers (means)
- Alternate:
 - Assign data instances to closest mean
 - Assign each mean to the average of its assigned points
- Stop when no points' assignments change



October 26, 2018 <u>55</u>

k-Means Clustering (2)

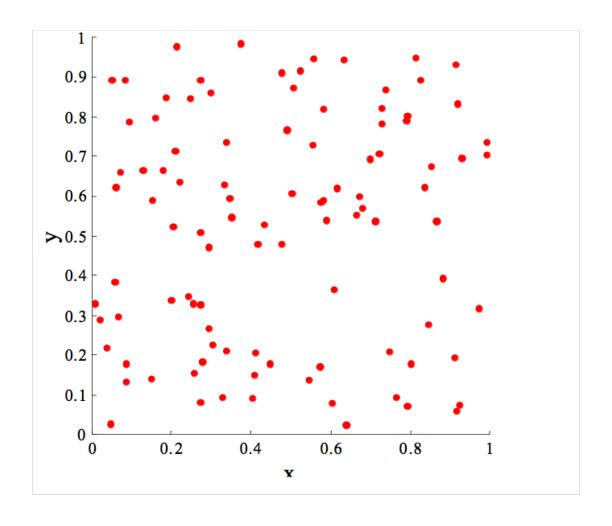


What is Machine Learning?

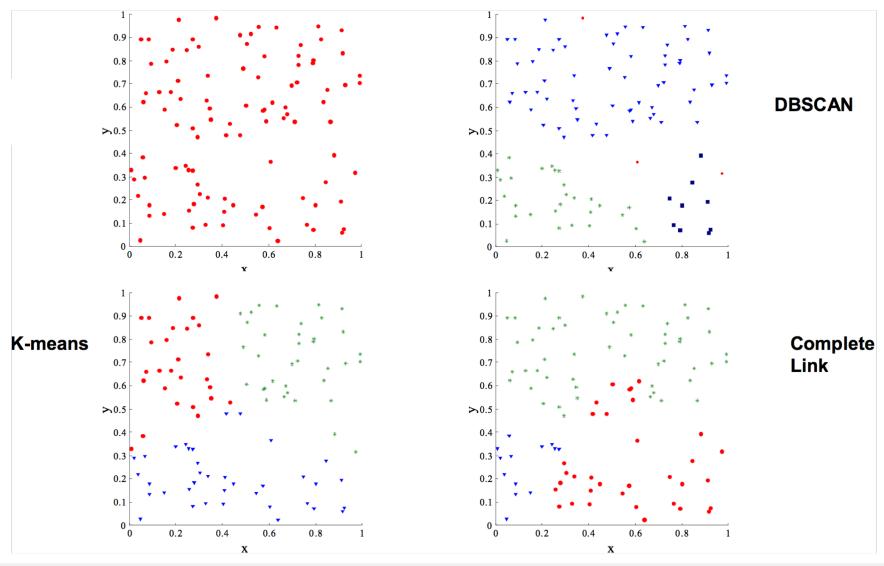
ML ala XKCD

What is Machine Learning?

What Makes for a "Good" Clustering?



Did I Cluster Well?



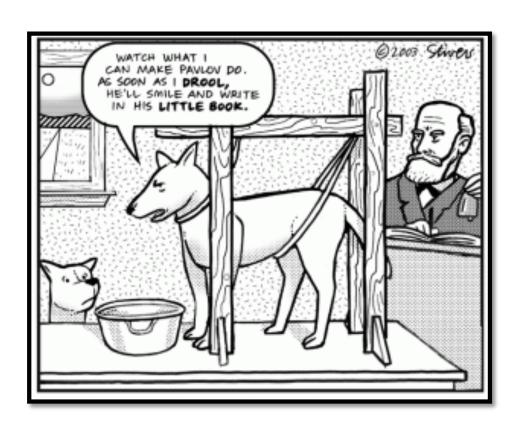
What is Machine Learning?

Key Evaluation Questions

- Does non-random structure actually exist in the data?
- 2. What is the correct number of clusters?
- 3. How well do the results of a cluster analysis fit the data?
- 4. How well do the results of a cluster analysis adhere to externally known results?
- 5. Given two clusterings which is better?

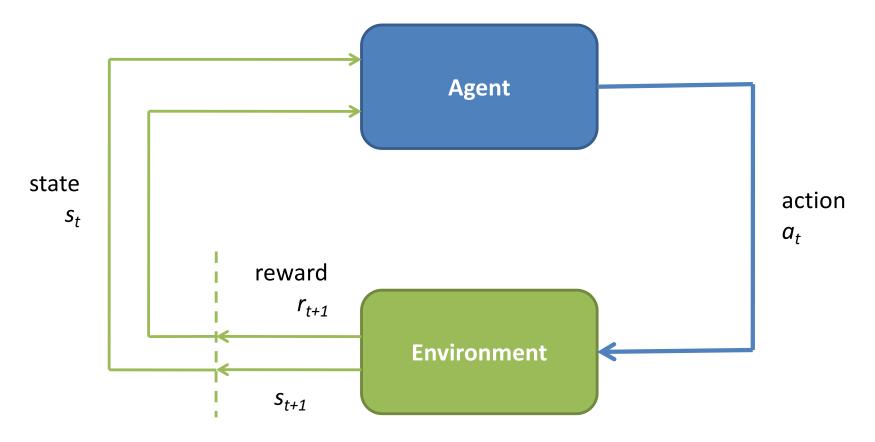
Reinforcement Learning (RL)

Choose actions to maximize future reward



The RL Cycle

Issues. credit assignment, exploration vs. exploitation, reward function, ...



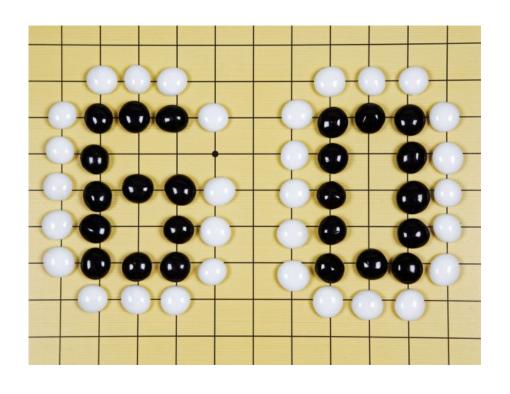
Temporal Difference (TD) Learning

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha[r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

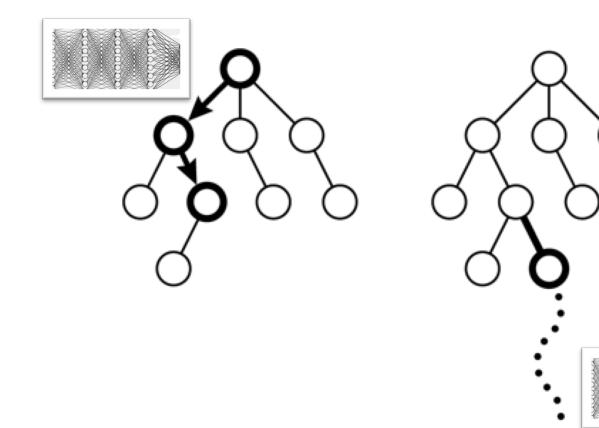
- Evidence that some neurons (dopamine) operate similarly
- Lead to world-class play via TD-Gammon (neural network trained via TD-learning)

AI + ML = AlphaGo

- Until recently, Al was not competitive at champion level
 - 2015: beat Fan Hui,
 European champion
 (2-dan; 5-0)
 - 2016: beat Lee Sedol, one of the best players in the world (9-dan; 4-1)
 - 2017: beat Ke Jie, #1 in the world (9-dan; 3-0)
- MCTS + ANNs for policy (what to do) and evaluation (how good is a board state)



MCTS + 2xANNs



Checkup

- Build an Atari system that learns game-winning techniques via actually playing and adjusting actions based upon score changes
- 1. RL

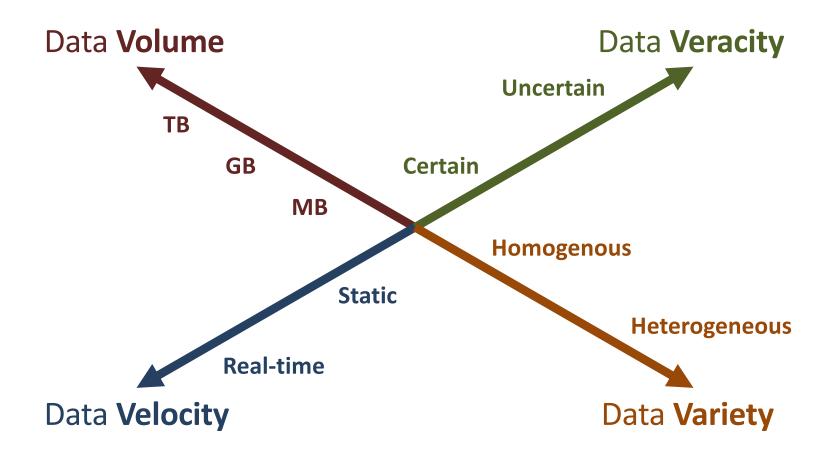
- 2. Given a dataset of past credit-card transactions (known to be fraudulent or not), build a system to identify future fraud
- Supervised
 - Classification

- 3. If we assume incoming CS1 students are bi-modal, but normally distributed, find the average grades of the two groups
- 3. Unsupervised
 - Parameter estimation

Issues/Challenges

- Big Data
- Curse of Dimensionality
- No Free Lunch

Big Data – The Four V's



Parametric algorithm: model does not grow with data size

The Curse of Dimensionality

"Various phenomena that arise when analyzing and organizing data in high-dimensional spaces (often with hundreds or thousands of dimensions) that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience." – Wikipedia

- Memory requirement increases
- Required sampling increases
- Distance functions become less useful

. . .

No Free Lunch

 There is no universally best model – a set of assumptions that works well in one domain may work poorly in another

 We need many different models, and algorithms that have different speedaccuracy-complexity tradeoffs

Thank You:) Questions?

Nate Derbinsky

Associate Teaching Professor
Director of Teaching Faculty
WVH 208B

n.derbinsky@northeastern.edu

https://derbinsky.info

What is Machine Learning?