Soar Workshop

RL Tutorial
May 14, 2018

Topics

* RL as a learning mechanism
* Architecture & agent design
* Eater integration

What is Reinforcement Learning (RL)?

* One of the core tasks in Machine Learning (ML)
* |In addition to supervised & unsupervised

* Goal: learn an optimal action policy; given an
environment that provides states, affords actions,
and provides feedback as numerical reward,
maximize the expected future reward

* Typically involves |learning a value function that maps
states (or state-action pairs) to a prediction of expected
future reward

RL Cycle

Goal: learn an action-selection policy such as to maximize
expected receipt of future reward

state .
action

reward

Fies

TTAARAT T T

Str1

May 14, 2018 Reinforcement Learning in Soar

Soar 9

Symbolic Long-Term Memories

Procedural Semantic Episodic
X

A
Semantic Episodic
Learning Learning Learning

Chunking

A A 4
C_J
Symbolic Working Memory v
2 9
e i
A L 2

Spatial Visual System
Object-based
continuous metric space
A
S Perception [Action]
; v

May 14, 2018 Reinforcement Learning in Soar

Methods for
Learning Procedural Knowledge

Chunking Reinforcement Learning
* Converts deliberation in * Tunes operator numeric
substates into reaction preferences to reflect
via rule compilation expectation of reward

* Updates existing rules

* Creates new rules

May 14, 2018 Reinforcement Learning in Soar

NoUueswWwNPRE

Soar Basic Functions

Input from environment

Elaborate current situation: parallel rules

Propose operators via acceptable preferences

Evaluate operators via preferences: Numeric indifferent preference
Select operator

Apply operator: Modify internal data structures: parallel rules

Output to motor system [and access to long-term memories]

Elaboration Proposal Elaboration Application
[] Operator
Input l: || l: H E Decision l: || l[_i Output

State Operator Operator Operator

May 14, 2018

Reinforcement Learning in Soar 7

Left-Right Demo

1. Soar Java Debugger
2. Source left-right.soar file

May 14, 2018 Reinforcement Learning in Soar

Left-Right Demo

Script

1. srand 50412

2. step

3. run 1 -p

4. click: op pref tab

» note numeric indifferents

5. print left-right*rl*left
6. print left-right*rl*right

7. run
> note movement direction

8. print left-right*rl*left
9. print left-right*rl*right
10. init-soar

11. Repeat from #2 (~5 times)

Left-Right: Takeaways

Reinforcement learning changes rules in procedural
memory
* Changes are persistent

e Change affects numeric indifferent preferences, which in turn
affects the selection of operators

* Change is in the direction of the underlying reward signal (will
discuss this more shortly)

RL -> Architecture & Agent Design

Value function
via RL rules [agent]

Reward
via working-memory structures [architecture, agent]

Policy updates
via Temporal Difference (TD) Learning [architecture]

RL Rules

The RL mechanism maintains Q-values for state-
operator pairs in specially formulated rules,

identified by syntax
* RHS with a single action, asserting a single numeric
indifferent preference with a constant value

sp {left-right*rl*left sp {left-right*rl*right
(state <s> “name left-right (state <s> “name left-right
“operator <op> +) “operator <op> +)
(<op> “name move (<op> “name move
Adir left) “dir right)
-—> -—>

(<s> “operator <op> = 0)} (<s> “operator <op> = 0)}

Left-Right Demo

Focus: RL Rules

Soar Java Debugger

Source left-right.soar file
print —--full --rl

run

print —--full --rl

o U HEwbhE

print —--rl

Reward Representation

Each state in WM has a reward-1ink structure

Reward is recognized by syntax
(<reward-link> “reward <r>)
(<r> ”“value [integer or float])

* The reward-link is not directly modified by the environment or architecture
(i.e. requires agent interpretation/management)

 Reward is collected at the beginning of each decide phase

 Reward on a state’s reward-link pertains only to that state (more
on this later)

 Reward can come from multiple sources: reward values are summed by
default

Reward Rule Examples

sp {left-right*reward*left sp {left-right*reward*right
(state <s> “name left-right (state <s> “name left-right
~location ~“location right
~reward-link <rl>) “reward-link <rl>)
_o> ——>
(<rl> “reward <r>) (<rl> “reward <r>)
(<r> ~value 1)} (<r> “value (1)}

May 14, 2018 Reinforcement Learning in Soar

RL Cycle

state

May 14, 2018

|

I reward
| Ftiq
[V

n

I

|

, St+1

Reinforcement Learning in Soar

action

16

RL Cycle in Soar

May 14, 2018 Reinforcement Learning in Soar

17

RL Cycle in Soar

stateg

May 14, 2018 Reinforcement Learning in Soar

18

RL Cycle in Soar

evaluate

state
d operators,

May 14, 2018 Reinforcement Learning in Soar

19

RL Cycle in Soar

evaluate select

state
d operators, operator,

May 14, 2018 Reinforcement Learning in Soar

20

RL Cycle in Soar

- evaluate select initiate
d operators, operator, external
action(s)

May 14, 2018 Reinforcement Learning in Soar

21

RL Cycle in Soar

- evaluate select initiate
d operators, operator, external
action(s)
stateg,;
rewardy,,

May 14, 2018 Reinforcement Learning in Soar 22

RL Cycle in Soar

- evaluate select initiate
d operators, operator, external
action(s)
stateg,, evaluate
reward,,, operatorsg,,

May 14, 2018 Reinforcement Learning in Soar 23

RL Cycle in Soar

J— evaluate select
d operators, operator,
select
operator
evaluate P dit

operatorsy,,

update
policy

May 14, 2018 Reinforcement Learning in Soar

initiate
external
action(s)

24

RL Updates

» Takes place during decide phase, after operator selection
* For all RL rule instantiations (n) that supported the /ast selected operator

value,; =valuey+(64/n)

Where, roughly...

&4 = af reward,,; + Y(qy,,) - value,]

Where...
* ais a parameter (learning rate)

* Yis a parameter (discount rate)

Qq41 IS dictated by learning policy

* On-policy (SARSA): value of selected operator
Off-policy (Q-learning): value of operator with maximum selection probability

Value Function

Issues

Structure

* What features comprise RL-rule conditions
(tradeoff: convergence speed vs. performance)

* High dimensionality -> computationally infeasible

Initialization

* Quality estimates may bootstrap agent
performance and reduce time to convergence

Eaters RL

e General idea:

* RL rules will learn to select between
forward and rotate operators.

Eaters RL 1

Get your eater code
Add to top of file or
create a new file (eater-RL.soar)

—turn on RL
* rl -s learning on
 indiff -g # use greedy decision making
e indiff -e 0.001 # low epsilon

Eaters RL 2

Remove indifferent preference from proposals so RL rules will influence
decision.

sp {random*propose*forward
(state <s> “name eater
Aio.input-link.front)
-->
(<s> “operator <op> +)
(<op> ~name forward)}

sp {random*propose*rotate
(state <s> “name eater
Ajo.input-link.front)
-->
(<s> “operator <op> +)
(<op> ~name rotate)}

Just add these to a new file and they will load over your old versions.

Eaters RL 3

Generate RL rules for every color and operator combination:

gp {eater*evaluate*forward
(state <s> “name eater
“io.input-link.front [red wall blue empty green purple]
“operator <opl> +)
(<op> “name forward)
-=>
(<s> “operator <opl> = 0.0)}

gp {eater*evaluate*rotate
(state <s> “name eater
“io.input-link.front [red wall blue empty green purple]
“operator <opl> +)
(<opl> “name rotate)
-=>
(<s> “operator <opl> = 0.0)}

Each of these will generate 6 rules!

RL will change the value of = 0.0 in each of the rules as it learns

Eaters RL 4

Add rule that assigns reward — use the change in score:

sp {eater*elaborate*state
(state <s> “name eater
“‘reward-link <rl>

“io.input-link.score-diff <d>)
-=>

(<rl> “reward.value <d>)

Run!

* Run eater
e Llook atrlrules:p -r

o7
I

* Reset eater (type “r”), run again

* See how rl rules change:
* Number of updates
* Value of indifferent preference

* Gets better, but is very limited by the operators available
(forward and rotate).

