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Topics

* RL as a learning mechanism
* Architecture & agent design
* Eater integration



What is Reinforcement Learning (RL)?

* One of the core tasks in Machine Learning (ML)
* |In addition to supervised & unsupervised

* Goal: learn an optimal action policy; given an
environment that provides states, affords actions,
and provides feedback as numerical reward,
maximize the expected future reward

* Typically involves |learning a value function that maps
states (or state-action pairs) to a prediction of expected
future reward




RL Cycle

Goal: learn an action-selection policy such as to maximize
expected receipt of future reward
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Methods for
Learning Procedural Knowledge

Chunking Reinforcement Learning
* Converts deliberation in * Tunes operator numeric
substates into reaction preferences to reflect
via rule compilation expectation of reward

* Updates existing rules

* Creates new rules
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Soar Basic Functions

Input from environment

Elaborate current situation: parallel rules

Propose operators via acceptable preferences

Evaluate operators via preferences: Numeric indifferent preference
Select operator

Apply operator: Modify internal data structures: parallel rules

Output to motor system [and access to long-term memories]

Elaboration Proposal Elaboration Application
[ ] Operator
Input l: || l: H E Decision l: || l[ _i Output

State Operator Operator Operator
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Left-Right Demo

1. Soar Java Debugger
2. Source left-right.soar file
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Left-Right Demo

Script

1. srand 50412

2. step

3. run 1 -p

4. click: op pref tab

» note numeric indifferents

5. print left-right*rl*left
6. print left-right*rl*right

7. run
> note movement direction

8. print left-right*rl*left
9. print left-right*rl*right
10. init-soar

11. Repeat from #2 (~5 times)



Left-Right: Takeaways

Reinforcement learning changes rules in procedural
memory
* Changes are persistent

e Change affects numeric indifferent preferences, which in turn
affects the selection of operators

* Change is in the direction of the underlying reward signal (will
discuss this more shortly)



RL -> Architecture & Agent Design

Value function
via RL rules [agent]

Reward
via working-memory structures [architecture, agent]

Policy updates
via Temporal Difference (TD) Learning [architecture]



RL Rules

The RL mechanism maintains Q-values for state-
operator pairs in specially formulated rules,

identified by syntax
* RHS with a single action, asserting a single numeric
indifferent preference with a constant value

sp {left-right*rl*left sp {left-right*rl*right
(state <s> “name left-right (state <s> “name left-right
“operator <op> +) “operator <op> +)
(<op> “name move (<op> “name move
Adir left) “dir right)
-—> -—>

(<s> “operator <op> = 0)} (<s> “operator <op> = 0)}



Left-Right Demo

Focus: RL Rules

Soar Java Debugger

Source left-right.soar file
print —--full --rl

run

print —--full --rl
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print —--rl



Reward Representation

Each state in WM has a reward-1ink structure

Reward is recognized by syntax
(<reward-link> “reward <r>)
(<r> ”“value [integer or float])

* The reward-link is not directly modified by the environment or architecture
(i.e. requires agent interpretation/management)

 Reward is collected at the beginning of each decide phase

 Reward on a state’s reward-link pertains only to that state (more
on this later)

 Reward can come from multiple sources: reward values are summed by
default



Reward Rule Examples

sp {left-right*reward*left sp {left-right*reward*right
(state <s> “name left-right (state <s> “name left-right
~location ~“location right
~reward-link <rl>) “reward-link <rl>)
_o> ——>
(<rl> “reward <r>) (<rl> “reward <r>)
(<r> ~value 1)} (<r> “value (1)}
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RL Cycle
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RL Cycle in Soar
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RL Cycle in Soar
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RL Cycle in Soar
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RL Cycle in Soar

- evaluate select initiate
d operators, operator, external
action(s)
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- evaluate select initiate
d operators, operator, external
action(s)
stateg,;
rewardy,,
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- evaluate select initiate
d operators, operator, external
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reward,,, operatorsg,,
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RL Cycle in Soar
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RL Updates

» Takes place during decide phase, after operator selection
* For all RL rule instantiations (n) that supported the /ast selected operator

value,; =valuey+(64/n)

Where, roughly...

&4 = af reward,,; + Y(qy,,) - value,]

Where...
* ais a parameter (learning rate)

* Yis a parameter (discount rate)

Qq41 IS dictated by learning policy

* On-policy (SARSA): value of selected operator
Off-policy (Q-learning): value of operator with maximum selection probability



Value Function

Issues

Structure

* What features comprise RL-rule conditions
(tradeoff: convergence speed vs. performance)

* High dimensionality -> computationally infeasible

Initialization

* Quality estimates may bootstrap agent
performance and reduce time to convergence



Eaters RL

e General idea:

* RL rules will learn to select between
forward and rotate operators.



Eaters RL 1

Get your eater code
Add to top of file or
create a new file (eater-RL.soar)

—turn on RL
* rl -s learning on
 indiff -g # use greedy decision making
e indiff -e 0.001 # low epsilon



Eaters RL 2

Remove indifferent preference from proposals so RL rules will influence
decision.

sp {random*propose*forward
(state <s> “name eater
Aio.input-link.front)
-->
(<s> “operator <op> +)
(<op> ~name forward)}

sp {random*propose*rotate
(state <s> “name eater
Ajo.input-link.front)
-->
(<s> “operator <op> +)
(<op> ~name rotate)}

Just add these to a new file and they will load over your old versions.



Eaters RL 3

Generate RL rules for every color and operator combination:

gp {eater*evaluate*forward
(state <s> “name eater
“io.input-link.front [ red wall blue empty green purple ]
“operator <opl> +)
(<op> “name forward)
-=>
(<s> “operator <opl> = 0.0)}

gp {eater*evaluate*rotate
(state <s> “name eater
“io.input-link.front [ red wall blue empty green purple ]
“operator <opl> +)
(<opl> “name rotate)
-=>
(<s> “operator <opl> = 0.0)}

Each of these will generate 6 rules!

RL will change the value of = 0.0 in each of the rules as it learns



Eaters RL 4

Add rule that assigns reward — use the change in score:

sp {eater*elaborate*state
(state <s> “name eater
“‘reward-link <rl>

“io.input-link.score-diff <d>)
-=>

(<rl> “reward.value <d>)



Run!

* Run eater
e Llook atrlrules:p -r
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* Reset eater (type “r”), run again

* See how rl rules change:
* Number of updates
* Value of indifferent preference

* Gets better, but is very limited by the operators available
(forward and rotate).



