Soar-RL Tutorial
Soar Workshop 29

Nate Derbinsky
University of Michigan

Computer Science and Engineering at Michigan

Setting Expectations

« This is not a tutorial on reinforcement learning

— Reinforcement Learning: An Introduction
(Richard S. Sutton, Andrew G. Barto)

« Topics
— Soar-RL as a learning mechanism
— Agent design
— Architectural details
— Useful commands

Computer Science and Engineering at Michigan

Some History

« 2004
— Initial implementation

— Soar-RL: Integrating Reinforcement Learning with Soar
Shelley Nason, John Laird (ICCM)

- 2007

— The Importance of Action History in Decision Making and Reinforcement Learning
YJ Wang, John Laird (ICCM)

- 2008

— Re-engineered Soar-RL released as 8.6.4-beta, then 9.0.0

— A Computational Unification of Cognitive Control, Emotion, and Learning
Bob Mariner (Dissertation)

« 2009
— Soar-RL refinements (9.0.1)

— Learning to Use Episodic Memory
Nick Gorski, John Laird (ICCM)

Computer Science and Engineering at Michigan

Some RL Terminology

- [Agent }

state jewafd action

S, : a,

Sy

. | Environment]4—
L

}
|
<
]

« Agent’s goal: maximize total amount of reward received over the
long run

« Policy: mapping from states to probabilities of selecting each
possible action

« RL specifies how the agent changes its policy as a result of its
experience

Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction

4

Computer Science and Engineering at Michigan

CSE

Numeric Indifferent Preferences

* (<state> “"operator <op> = number)
— number, the value of the preference, is a numeric constant

« The value of the numeric indifferent preference may bias
selection of the operator from amongst indifferent
preferences

Computer Science and Engineering at Michigan

CSE

RL as a Learning Mechanism

 Soar-RL directly modifies numeric indifferent preference
values such as to maximize the expected receipt of
future reward

« By modifying preference values in procedural memory,
Soar-RL alters the outcome of operator selection,
thereby affecting agent behavior

Computer Science and Engineering at Michigan

CSE

Left-Right Agent Demo

* Load Debugger
e source “SoarLibrary/Demos/left-right.soar”
« srand 5041229 (SOAR29)

e p—rl, run, init; p —rl, run, init; p —rl, run, init; p —rl

JJJJJJ A 7 Computer Science and Engineering at Michigan

Soar-RL Sequence

| Time | Input | Propose | Decide | Apply | Output |
© —

t+1

LRG0 8 Computer Science and Engineering at Michigan

RL Agent-Environment Interface

reward

Environment

A 9 Computer Science and Engineering at Michigan

Soar-RL Agent-Environment
Interface

A
Elaboration

Operator Proposal
Operator Evaluation

Operator

Selection Operator Application

Soar Agent

input-link input-link
St

Environment

June 23, 2009 10

Computer Science and Engineering at Michigan

CSE

Soar-RL within Soar 9

4 Symbolic Long-Term Memories)
Procedural Semantic Episodic
[Je—>C]
l=.‘=>1=l
——
AN S— .3 3 <
Reinforcement || Chunking Semantic Episodic
Learning ¢ Leamning Learning
A | \ 4 [Y [
4 C_J J
R Symbolic Short-Term Memory T
— 2
£ 3 e o
] o Z.
<A 53
- 1
Clustering [LT Visual Memory]
) ;
Perception |g———p ST Visual Imagery }4_’ Action
A
Body
v
June 23, 2009 11

Computer Science and Engineering at Michigan

Soar-RL Agent Design

« To take advantage of the Soar-RL architectural
mechanism, an agent must implement two components:

— Soar-RL compatible preferences
— Reward rules

12

Computer Science and Engineering at Michigan

CSE

Soar-RL Rules

« Operator preferences that are recognized as updateable
by Soar-RL must be proposed in a special form:
— LHS can be anything

— RHS must be a single numeric indifferent preference with a
constant value

sp {my*rl*rule
(state <s> "“operator <op> +
“condition-a alpha
“condition-b beta)
(<op> “name my-op)
-——>
(<s> “operator <op> = 2.3)

13

Computer Science and Engineering at Michigan

Soar-RL Rule Example

sp {left-right*rl*left
(state <s> “"name left-right
“operator <op> +)
(<op> “name move
“dir left)
-——>

(<s> "“operator <op> = 0)

14

Computer Science and Engineering at Michigan

CSE

Reward

« Upon creation of a new state within working memory, the
architecture will automatically create a reward-link structure

« At the beginning of each decision phase, the architecture will
collect all properly located numeric constants (integer or float)
on each state’s reward-link:

— state “"reward-link.reward.value *

 When performing an update for a state, the architecture will
consider all reward collected at that state’s reward-link

 The reward-link is not part of the io-link and is not modified
directly by the environment

15

Computer Science and Engineering at Michigan

Reward Rule Example

sp {left-right*reward*left
(state <s> “"name left-right
“location left
“reward-link <r>)
-—=>

(<r> “reward.value -1)

16

Computer Science and Engineering at Michigan

CSE

Left-Right Agent

* Load “SoarLibrary/Demos/left-right.vsa” in VisualSoar

JJJJJJ , 2009 17

Computer Science and Engineering at Michigan

2-Minute Break

June 23, 2009 18

Computer Science and Engineering at Michigan

CSE

Water Jug RL

« Demo
« Soar-RL compatible preferences
 Reward rule

June 23, 2009 19

Computer Science and Engineering at Michigan

CSE

Water Jug RL Demo

* Load Debugger
« Water Jug RL button
e run, init, run, init, run, init

20

Computer Science and Engineering at Michigan

CSE

Water Jug: RL Preferences

¢ Step 1

— Modify existing proposal rules (propose*empty, propose*fill,
propose*pour) such that they no longer propose indifferents

I

(i.e. remove the “=

« Step 2
— Create Soar-RL rules to represent the action policy for empty,
pour, and fill in all configurations of jugs
e 3%2%47*6 =144 rules!!!

21

Computer Science and Engineering at Michigan

CSE

Complex Policies

 In order for Soar-RL to affect selection of an operator in
a particular state, a Soar-RL rule must exist to represent

the state-operator pair

« With complex agents, the requirement of manually
generating these rules is unreasonable
— Solutions: scripting, gp, or templates

22 Computer Science and Engineering at Michigan

CSE

The gp Command

 The gp command defines a pattern used to generate and
source a set of Soar productions

— gp {production body}

« Patterns are whitespace-separated values in square brackets;
every combination across all square-bracketed value lists will
be generated

* Pros:
— very fast (all computation done at source)
« Cons

— limited expressability (can create unnecessary rules)
— all values must be known at design time

23

Computer Science and Engineering at Michigan

CSE

gp Example

gp {water-jug*fill
(state <s> “name water-jug
“operator <op> +
“Jug <jl> <j2>)
(<op> “name fill “fill-jug.volume [3 5])
(<j1> “volume 3 “contents [0 1 2 3])
(<j2> “volume 5 “contents [0 1 2 3 4 5])
—=>
(<s> "“operator <op> = 0)

24

Computer Science and Engineering at Michigan

CSE

Soar-RL Templates

« Template have variables that are filled in to generate
Soar-RL rules as they are encountered

* Arule is a template rule if
— It has a :template flag

— Adheres to the format of a Soar-RL rule
e Can use a variable as numeric indifferent value

* Pros

— only creates rules as they are encountered
« Cons

— VERY slow during run-time

25

Computer Science and Engineering at Michigan

CSE

Template Example

sp {water-jug*fill
:template
(state <s> "name water-jug
“operator <op> +
“Jug <jl> <j2>)
(<op> "name fill "fill-jug.volume <vol>)
(<j1> “volume 3 “contents <small-c>)

(<j2> “volume 5 “contents <large-c>)
-——>

(<s> "“operator <op> = 0)

26

Computer Science and Engineering at Michigan

CSE

Water Jug RL Agent

« Implement gp commands for fill, empty, pour
« Add reward to water-jug*detect*goal*achieved rule

27

Computer Science and Engineering at Michigan

2-Minute Break

Next Up: Architectural Details

JJJJJJ , 2009 28

Computer Science and Engineering at Michigan

Numeric and Symbolic
Preferences

« Symbolic preferences take precedence over numeric
preferences

« Symbolic preferences are processed first, and only if
there are tied operators remaining are numeric
preferences examined

 Example
- 01>02
- 01=0
- 02=2.1

29

Computer Science and Engineering at Michigan

CSE

Exploration vs. Exploitation

H '! +0.000
- 5
s

« Why didn’t the agent choose right?

 Recall:

30

Computer Science and Engineering at Michigan

CSE

Exploration Policies

* For reinforcement learning to discover the optimal policy,
It is necessary that the agent sometimes choose an
action that does not have the maximum predicted value

* This exploration policy is set using the
indifferent-selection command
— indifferent-selection <policy>

» Policies: boltzmann, epsilon-greedy (default), softmax,
first/last (deterministic)

31 Computer Science and Engineering at Michigan

CSE

Gaps in Rule Coverage

« Gap

— one or more contiguous decision cycles during which no
Soar-RL rules fire

« By default, Soar-RL will automatically propagate RL
updates over gaps, discounted with respect to the length
of the gap (defined as the number of decision cycles)

32

Computer Science and Engineering at Michigan

S1

S2

01

RL in Sub-Goals

02

01

01

01

011

012

013

Rewards at S1 after O1 are
attributed to O1, discounted

with respect to the number of
decision cycles

Rewards at S2 are attributed
to the respective operator

After O13, reward is checked
at S2 and, if present,
attributed directly to O13

Computer Science and Engineering at Michigan

CSE

Useful Commands

* Manipulating Soar-RL parameters
* Trace feedback

* Print extension

« EXcise extension

 Other commands

34

Computer Science and Engineering at Michigan

Soar-RL Parameters

Get a parameter

— rl [-g|--get] <name>

Set a parameter

— rl [-s|--set] <name> <value>

Get all values
—rl

Soar-RL is disabled by default, to enable:

— rl --set learning on

35

Computer Science and Engineering at Michigan

CSE

Soar-RL Trace Information

 watch --rl

— Provides useful information about gaps and numeric
indifferent updates

June 23, 2009 36

Computer Science and Engineering at Michigan

CSE

Soar-RL print Extension

print [-r|--rl]

* Prints all Soar-RL rules with the number of updates and
current numeric indifferent value of each

>print --rl
left-right*rl*right 1. 0.3
left-right*rl*left 2. -0.51

« Common for saving Soar-RL rules at the end of a run
command-to-file /path/to/myfile print --full --rl

37

Computer Science and Engineering at Michigan

CSE

Soar-RL excise Extensions

* excise [-r|--rl]

— Removes all Soar-RL rules (including those created from
templates)

* excise [-T|--template]
— Removes all Soar-RL templates

38

Computer Science and Engineering at Michigan

CSE

Other Commands

* predict

— Determines, based upon current operator proposals, which
operator will be chosen during the next decision phase

e select <id>

— Forces the selection of an operator, whose id is supplied as
an argument, during the next decision phase

« preferences

39

Computer Science and Engineering at Michigan

CSE

Additional Resources

» Soar-RL Manual and Tutorial
— In the “Documentation” directory of all releases

« Soar-RL Demo Agents
— In the “SoarLibrary/Demos” directory of all releases
— left-right: basic tutorial agent
— rl-unit. demonstrates update behavior over gaps/sub-goals

« Sutton, R.S., Barto, A.G.: Reinforcement Learning: An
Introduction. MIT Press, Cambridge (1998)

— http://www.cs.ualberta.ca/%7Esutton/book/ebook/the-book.html
40

Computer Science and Engineering at Michigan

