Episodic Memory in Soar

Nate Derbinsky

Disney Research, Boston

Agenda

- Episodic memory as a learning mechanism
- Basic usage
 - Example: TankSoar
- Scaling real-time performance
 - Multi-domain: linguistic, planning, robotics, games

Soar 9

Episodic Memory

Long-term, contextualized store of specific events (Tulving, 1983)

Episodic Memory in Soar

A weak learning mechanism

- Automatically captures, stores, and temporally indexes agent state
- Provides content-addressable agent interface to autobiographical prior experience
- Supports a general set of cognitive capabilities

Episodic Memory

Integration

Representation

• Episode: connected di-graph

• Store: temporal sequence

Encoding/Storage

- Automatic
- No dynamics (e.g. forgetting, blending, ...)

Retrieval

- Cue: acyclic graph
- Semantics: desired features in context
- Find the most recent episode that shares the most leaf nodes in common with the cue

Basic Usage

- Working-memory structure
- Episodic-memory representation
- Storing knowledge
- Retrieving knowledge

Working-Memory Structure

Soar creates an epmem structure on each state

Each epmem structure has specialized substructure

- command: agent-initiated actions
- result: architectural feedback
- present-id: current episode number (more later)

Episodic-Memory Representation

Similar to working memory: symbolic triples

Structures within an episode are connected;
 separate episodes are disconnected

Storing Knowledge

- What. top state of working memory
- Why. task-independent trigger
 - epmem --set trigger << dc output >>
 - dc: decision cycle (default)
 - output: new augmentation of output-link
- When. at the end of a phase
 - epmem --set phase << output selection >>
 - output is default
 - selection may be useful for in-the-head agents

Retrieving Knowledge

Cue-Based

Find the episode that best matches a cue and add it to working memory

Temporal Progression

Replace the currently retrieved episode with the next/previously encoded episode

Non-Cue-Based (not covered)

Add an episode to working memory from episode #

Common Constraints (motivated by performance/reactivity):

- Only one per state per decision
- Processed during phase (slide 10)
- Only re-processed if WM changes to commands

Cue-Based Retrieval: Syntax

- The neg-query is optional
- Cues must be <u>acyclic</u>
- The <q> and <nq> identifiers form the roots of episode sub-graph cues
 - query represents desired structures
 - neg-query represents undesired structures

Cue-Based Retrieval Example

Cue-Based Retrieval

Optional Modifiers

```
(<cmd> ^before time-id)
(<cmd> ^after time-id)
(<cmd> ^prohibit time-id1 time-id2 ...)
```

Hard constraints on the episodes that can be retrieved.

Temporal Progression

```
(<cmd> ^next <new-id>)
(<cmd> ^previous <new-id>)
```

Retrieves the next/previous episode, temporally, with respect to the last that was retrieved

Example Task

TankSoar

Using Episodic Knowledge for Subgoal Selection

Learning from Success & Failure

A. M. Nuxoll & J. E. Laird, 2012

11 July 2013 Soar: Episodic Memory 18

Episodic Memory

Computational Challenges for Scaling RT Agents

Arbitrary, dynamic state

Scaling potential, agent...

- state (1000s nodes/edges)
- life (10^6-10^9) episodes ~ days)

Cue-matching optimality

- Constrained subgraph isomorphism (NP-complete)
- Search: O(# episodes)

Multi-Domain Scaling Evaluation

Experimental Setup 🔛 🗐

- 49 domains: WSD, planning, robotics, games
- 10^5-10^8 episodes ~ days of real time, >100 cues

Thank You:)

Questions?